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Resumo

Esta tese resolve uma variante do problema clássico ”Vehicle Routing Problem (VRP)”, que surgiu de

um problema real especı́fico, ainda não resolvido, proposto pela empresa Worten. O problema foi

formulado matematicamente e analisado para ser otimizado. O problema pode ser classificado como

”Site-Dependent Vehicle Routing Problem With Hard Time Windows (SDVRTHTW)”, e precisa de ser

resolvido diariamente em duas ou três horas. Para resolver essa variante, foram propostos, testados

e modificados dois algoritmos diferentes: a Pesquisa Local e um Algoritmo Genético Hı́brido com a

Pesquisa Local. Uma adaptação das técnicas de Clarke and Wright Heuristic foi usada para inicializar

os algoritmos de pesquisa local e hı́brido.

O objetivo é encontrar a melhor combinação de rotas que permita reduzir os custo, servindo to-

dos os clientes da empresa sempre garantido que as restrições do problema real, como as restrições

rodoviárias da UE, não sejam violadas.Os algoritmos foram testados e implementados em três semanas

diferentes do ano em que as quantidades dos diferentes clientes da Worten são baseadas em previsões

e onde algumas rotas são sugeridas e analisadas pela empresa trasportadora sendo possı́vel fazer uma

comparação entre as rotas feitas pela empresa e as rotas feitas pelos algoritmos propostos.

Ambos os algoritmos apresentam melhores resultados do que o conjunto de rotas proposto pela

empresa, o que sugere que o uso de algoritmos de planejamento de rotas para o problema da Worten

diminui substancialmente os custos de entrega sem violar os constragimentos.

Palavras-chave: Problema De Roteamento De Veı́culos, Local Dependente, Janela Tempo-

ral Fixa, Algoritmo Genetico, Pesquisa Local
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Abstract

This thesis solves a variant of the classic Vehicle Routing Problem (VRP), a variant which emerged from

a specific and not yet solved real-world problem proposed by the company Worten. This problem has

been analyzed and formulated mathematically so that it can be optimized. The problem can be called

Site-Dependent Vehicle Routing With Hard Time Windows (SDVRPHTW), and needs to be solved in two

or three hours every day. In order to solve this variant two different algorithms were proposed, tested

and modified: a Local Search and a Hybrid Genetic algorithm with Local Search. An adaptation of the

Clarke and Wright Heuristic was used to start both the Local Search and the Hybrid Algorithms.

The goal is to find the best combination of routes that allows to spend the least amount of money

to supply all the customers of the company, whilst always guaranteeing that the restrictions of the real

problem, such as the EU road restrictions, are not violated. The algorithms were tested and implemented

in three different weeks of the year where the demands of the different customers of Worten are forecast

and where some routes are suggested and analyzed by the shipping company in order to make a

comparison between the routes made by the company and the ones given by the algorithms.

Both algorithms give better results than the set of routes proposed by the company. This suggests

that the use of route planning algorithms for the Worten problem substantially decreases delivery costs

without violating the constraints.

Keywords: Vehicles Routing Problem, Hard Time Window, Site Depended, Genetic Algorithm,

Local Search
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Chapter 1

Introduction

The transportation of goods is one of the most important aspects in the industrial sector, also known

as vehicle routing problem (VRP). The transportation sector normally has great competitiveness which

leads to a constant need of optimization to ensure competitive advantage [2].

Transport costs are of great importance in logistics costs so if transport costs go down, so do logistics

costs, for that reason the VRP has assumed a major importance in operational research.

Most of the VRP applied to realistic problems, also called rich VRP [2], are highly complex and need

to optimize more than one variable while fulfilling a high number of particular restrictions, which makes

the problems highly non feasible. Using a manual solution is not advised if competitive solutions are

desired, to obtain competitive results it is necessary to make use of computational power applied to the

specific problem.

1.1 Objectives and Contributions

Worten is a company of household appliances that needs to supply its different sales posts daily. The

customers that need to be supplied are not only the stores of Worten but also other stores from the

parent group, Sonae. The sales post are divided in 7 different areas all over Portugal, having a higher

concentration in the Lisbon area. To supply the different customers the fleet of a shipping company is

subcontracted. The fleet of the shipping company it’s composed by different vehicles, but only the bigger

ones are going to be used, these have a maximum capacity of 33 pallets.

Worten needs to increase the efficiency of the subcontracted vehicles in order to decrease the trans-

portation costs. For this, all the different parts of the delivery process were studied and two algo-

rithms were design having into account all the different restrictions. The algorithms were programmed

in phython from scratch since the restrictions are specific to this issue.

The main contribution were the designed of two algorithm that are able to improve the routes made

and we believe that those algorithms are also able to give competitive results in different vehicle routing

problems variations, mostly the Hybrid algorithm due to this one be a very flexible algorithm, so we

believe that with the right parameterization and formulation the Hybrid algorithm is able to solve most of

1



the VRP’s variations.

1.2 Thesis Outline

In this chapter a brief explanation of the necessity and importance of this thesis was made, also a

summary of each chapter is presented in this section, as a way to sum up the work done.

At chapter (2) an introduction to the VRP is made followed by an explanation of the different VRP vari-

ations. After diverse ways to solve the different VRP are introduced, namely exact methods, heuristics

and metaheuristics.

At chapter (3) the different characteristics of the problem are introduced, or in other words, how

do the different parts of Worten transportation system works. After a comparison with the theoretical

models introduced in chapter (2) a mathematical formulation of the problem is introduced. Finally, a

small example to provide some sensibility of the model is stated.

In chapter (4) a first proposed algorithm is introduced and after, two theoretical ways to solve the

problem stated in chapter (3) are described and explained, a Local Search and a Genetic Algorithm.

In the end of chapter (4) a final proposed algorithm is introduced where a Hybrid Genetic Algorithm is

used.

In chapter (5) the baseline solutions made by the company are introduced, followed by a parame-

terization and modification of the algorithms introduced in chapter (4) and finally a comparison is made

between the results obtain using the algorithms and the results of the baseline solution.

Finally in chapter (6) a little summary of the main conclusions achieved in this master thesis is made,

followed by the proposed future work.
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Chapter 2

Vehicle Routing Problem (VRP)

2.1 Introduction to the VRP

The Vehicle Routing Problem (VRP) was first introduced in the literature by Dantzig and Ramser in 1959

[3]. This type of problem consists in delivering a product from a depot center, to different customers in

different spacial places, subject to side constraints( time window, capacity, etc.). Some of the different

variations of the classic VRP can be see in the figure bellow:

Figure 2.1: Different types VRP from Montoya-Torres et al.[4]

In the classic VRP each customer has a deterministic and known demand and the objective is, with

a homogeneous fleet of vehicles, to minimize the total distance traveled.

This type of problem is one of the most studied problems in the field of operations research, and

since the VRP is an NP-hard problem , Lenstra and Kan [5], exact algorithms are only efficient for

small size problems. For problems of a larger scale, normally in practical applications, heuristics and

metaheuristics are more suitable approaches.
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Formulation: There are different places where the formulation can be found in the literature, the

following formulation is from Cordeau et al. [6].

The Symmetric VRP is defined by a Graph G = (V,E), where the V = {0, ..., n} is a vertex set,

each vertex except 0 (i ∈ V \{0}) represents a customer and 0 corresponds to the depot. Each edge

(e ∈ E = {(i, j) : i, j ∈ V, i < j}) is associated with a travel cost Cij . A fixed flee of m identical vehicles

with a capacity Q is available at the depot. The objective is to minimize the total travel cost with the

constrains that: (1) each customer can be visited exactly once, (2) each route begins and ends in the

depot, (3) the total demand of the route does not exceed the capacity Q and (4) the length of a route is

smaller that the preset limit, L.

Some of the most common and relevant variation of the classic VRP will be introduced and explained

in the rest of this chapter. At the end of the chapter some methods to solve the VRP and its variants will

be introduced.

2.2 Different types of vehicle routing problems

2.2.1 Capacitated Vehicle Routing Problem (CVRP)

The Capacitated Vehicle Routing Problem (CVRP) is one of the most simple variations of the VRP. The

CVRP incorporates an additional constraint where, every vehicle has an uniform capacity and must be

homogeneous. All vehicles must start and end at the depot and each customer cannot be visited more

than once.

The literature on this topic is very extensive and a comprehensive formulation of the problem can be

find in Toth and Vigo [7], where the goal is to minimize the total distance traveled. Both exact methods

such as Branch and Bound algorithms [7, 8] and metaheuristics methods, such as Genetic [9] and Tabu

Search [10], were used to solve this variation of the VRP.

2.2.2 Multi-Depot Vehicle Routing Problem (MDVRP)

The Multi-Depot Vehicle Routing Problem (MDVRP) is also an extension of the VRP where multi depots

are allowed instead of only one. The MDVRP is a very important problem due its similarity with many

real world scenarios. The MDVRP was first introduced in 1972 by Wren and Holliday [11] and it was

solved using different methods such as Genetic Algorithm (GA) (Liu et al. [12]) and Tabu Search (TS)

[13, 14]. In Montoya-Torres et al. [4] a complete state of the art for the MDVRP is presented, using

heuristics, metaheuristics and exact models.

The mathematical formulation of the MDVRP can be found in Montoya-Torres et al. [4] and the ex-

tension constraint to the VRP are: (1) there is more than 1 depot node; (2) the number, location and

the number of vehicles in each depot are predetermined; (3) the vehicles have to return to the same

depot after doing the route assigned; Generally, the objective is to minimize the total delivery distance.
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In Cordeau et al. [14] can be seen that the MDVRP can also be formulated as a special case of the

Periodic Vehicle Routing Problem (PVRP).

2.2.3 Periodic Vehicle Routing Problem (PVRP)

The Periodic Vehicle Routing Problem (PVRP) is once more a generalization of the VRP where an

horizon of t days is planed and, each customer has a predefined set of allowable combinations of

visit days (Cordeau et al. [14]), instead of a single day (example: Combinations = {{1, 3}, {2, 4}}). In

each day: (1) all vehicles begin and end their day at the depot. (2) The demand of each customer is

deterministic and know. (3) The number of vehicles is know and have a limited capacity. The main

objective is to minimize the total traveling cost.

The PVRP was first introduced in Beltrami and Bodin [15] in 1974. Only in 1979 the problem is

formally defined by Russell and Igo [16], and the mathematical formulation appear 5 years later by

Christofides and Beasley [17]. In the begging, the PVRP was more focused on garbage collection from

different centers.

The early paper publications used heuristics to solve the problem [15–17]. Those heuristics some-

times assign customers to days before routing them, and sometimes create routes and then attempt to

assign these routes to days [18]. In the paper ”Forty years of periodic vehicle routing” of Campbell and

Wilson [18] are enunciated a set of papers that solve the PVRP using heuristic (some of them were pre-

viously enunciate) and a set of papers that solve the PVRP using metaheuristics, such as Tabu Search

(Cordeau et al. [14]).

2.2.4 Split Delivery Vehicle Routing Problem (SDVRP)

There is a variant of the VRP where each customer is allowed to be visited more than once, this variant

is called Split Delivery Vehicle Routing Problem (SDVRP). In the SDVRP the demand of a customer can

be greater than the capacity of the vehicles, the demand of all the customers visit by a vehicle must

be smaller that its maximum capacity and each vehicle must start and end in the same depot. The

main objective is to minimize the total distance travelled. The SDVRP is necessary when the maximum

capacity of the vehicle is small and when a customer has a bigger demand that the maximum capacity

of the vehicle [19].

The SDVRP was proposed by Dror and Trudeau [20] in 1989 and a Local Search was used to find

some results and showed that savings can be generated by allowing split deliveries. A mathematical for-

mulation was presented by Archetti and Speranza [19] and in the same paper is shown that split delivery

can save up to 50% of the cost. The SDVRP can have multiple variants that are enunciated in ”Vehicle

routing problems with split deliveries” by Archetti and Speranza [21], that are basically the combinations

of the SDVRP with other VRP’s variations, for example SDVRP with Time Windows (SDVRPTW).

In the literature the SDVRP is solved in different ways, Archetti et al. [22] uses a metaheuristic (in

this paper is only called heuristic) and in Archetti et al. [23] Branch-and-cut algorithms are used to find

the exact solution, those are only able to solve very small instances. In Archetti and Speranza [21] are
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enunciated the different ways of solving the SDVRP in the literature, using both heuristics and exact

models.

2.2.5 Stochastic Vehicle Routing Problem (SVRP)

The Stochastic Vehicle Routing Problem (SVRP) is a VRP with the difference that some of the variables

are not know, this is, some variables are random. The most common SVRP is stochastic demand, where

the demand of the customer is characterized by a probability and this demand is only know when the

vehicle arrives at that customer. There are also two big variations, the stochastic customer where each

vertex (vi) is presented with a probability pi, and the stochastic travel time where each arc (vij) is also

characterized with a probability. The main objective of the SVRP is to minimize the expected value of

the cost [24, 25].

The SVRP was first introduced in 1969 in ”The multiple terminal delivery problem with probabilistic

demands” by Tillman [26], normally the SVRP is divided in 2 phases. In a first phase, an ”a priori”

solution is determined. In the second phase a corrective action is then applied to the first phase solution

if necessary. Normally the corrective action is coming back to the depot to load/unload when the capacity

of the vehicle is not respected [25]. This happens because due to randomness, the planned route may

not be feasible. Note that large routes will tend to more frequent route failures but less distance traveled,

so a compromise is necessary. Two variants of the stochastic programming are used, the Chance-

constrained programming that involves the replacing of a deterministic constraint by a set of change-

constraints (used when the violation of the capacity is not well defined and, can be modify to be solve

by deterministic programming) and stochastic programming with recourse where the cost of the violated

constraint is considered in formulating the problem. These formulation can be seen in Stewart Jr and

Golden [24].

The stochastic demand’s is the most studied of all SVRP, and it was solved in the begging by Tillman

[26] using an adaptation of the Clarke and Wright [1] heuristic algorithm. In Reimann [27] an adaptation

of the Ant Colony Optimization (ACO) is used to solve the SVRP and in Stewart Jr and Golden [24] the

authors show the formulation and the heuristics used to solve the stochastic demand’s. In Laporte et al.

[28] the stochastic travel times are defined and a Branch and Cut (B&C) algorithm is used to solve the

different formulations proposed.

2.2.6 Vehicle Routing Problem with Backhauls (VRPB)

The Vehicle Routing Problem with Backhauls (VRPB) is an extension of the VRP that involves both

deliveries (linehauls, L = {v1, ..., vl}) and pickups (backhauls, B = {vl+1, ..., vn}) nodes. All the linehauls

must be served before the backhauls by a fleet of homogeneous vehicles ”This is caused by the fact that

the vehicles are rear-loaded and rearrangement of the loads on the trucks at the delivery points is not

deemed feasible.” (Goetschalckx and Jacobs-Blecha [29]), also the lineshauls normally have a higher

service. The demand both for the linehauls and the backhauls is known and, for each route the total load

associated must not exceed, separately, the capacity of the vehicle. The main objective is to minimize
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the total distance traveled by the fleet (Toth and Vigo [30]).

The VRPB has a great practical and theoretical importance due to its frequency in real life situations

[30, 31]. The VRPB allows significant cost savings due to the utilization of the capacity of the vehicle

after all the delivers are made, something that is not done in the VRP. The mathematical formulation and

the relaxations of the formulation can be seen in Toth and Vigo [30].

It is easy to find in the literature the VRPB solved in many different ways. Deif and Bodin [32]

proposed an extension of the Clarke and Wright [1] algorithm. Goetschalckx and Jacobs-Blecha [29]

used a space-filling curve algorithm to solve the VRPB. An exact method, using Branch and Bound

(B&B) was proposed by Toth and Vigo [33] and in Zachariadis and Kiranoudis [31] and Gajpal and Abad

[34] some metaheuristics can be found to solve the VRPB.

2.2.7 Vehicle Routing Problem with Pickup and Delivery (VRPPD)

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) can be seen as a generalization of

the VRPB (Desaulniers et al. [35]) and subsequently a generalization of the VRP. The VRPPD consists

in picking up goods from a certain location, and drop those goods at their destination. Therefore it

is necessary that the pick-up and the drop-off are made by the same vehicle and in the same route

(coupling), and that pick-up is done before the drop-off (precedence). There are also depot constrains

to assure that the vehicles return to the appropriate depot (Desaulniers et al. [35]).

The VRPPD was first introduced by Min [36] in 1989 and is a very broad and general problem. The

VRPPD can be formulated as a graph, this formulation can be seen in Berbeglia et al. [37]. All the

variations of the VRPD can be defined by 3 fields (Structure—Visits—Vehicles), the definitions of the

fields and the variations are explain in Berbeglia et al. [37], and in Parragh et al. [38] are stated the dif-

ferent know variations of the VRPD. The mathematical formulations of two special and very study cases,

VRPPD with Time Windows (VRPPDTW) and VRP with Simultaneous Pickup and Delivery (VRPSPD),

can be found in Desaulniers et al. [35] and in Dethloff [39] respectively. It is also important to stress that

the VRPPD is normally associated with the delivery of goods, when it comes to delivering people it is

called Dial-A-Ride Problem (DARP), this is again a problem that has some importance in the literature

due to its practical applications (Berbeglia et al. [37]).

2.2.8 Vehicle Routing Problem with Time Windows (VRPTW)

A popular extension of VRP, the Vehicle Routing Problem with Time Windows (VRPTW), consists in

serving a set of customers with an homogeneous fleet where all the nodes (customers) have a specific

time window ([ai, bi]). If a vehicle arrives before the Earliest Possible Time (EPT),ai, it must wait in the

customer location, in other hand a vehicle cannot arrive after the Latest Possible Time (LPT),bi, for the

solution to be feasible. All customers are assigned to only one vehicle and the vehicles cannot exceed

their maximum capacity. The main objective is normally to first minimize the number of vehicles, followed

by minimizing the total traveling time [40–42].
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Solomon [43] was the first to introduced the VRPTW in the literature in 1987, and used a variation of

the Clarke and Wright [1] to solve it. In the VRPTW, the time window constraints can be divided in soft

constraints, where a vehicle is able to arrive after the LPT but a penalization is added to the objective

function (Taillard et al. [44]), and in hard constraints here the vehicle must arrive before the LPT for the

solution to be feasible (Cordeau et al. [45]). The mathematical formulation for the VRPTW can be found

in Cordeau et al. [45].

A vast literature can be found about the VRPTW due to being ”an important problem occurring in

many distribution systems” [46]. Bräysy [47] also used an heuristic to solve the VRPTW that gave good

results according to Bräysy and Gendreau [46]. Homberger and Gehring [42] used an hybrid algorithm

to solve the VRP, and in Taillard et al. [44] the VTPW with soft constrains is solved using a Tabu Search

algorithm.

2.2.9 Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

Another variation of the VRP, is the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The

HFVRP has the difference that the fleet is heterogeneous, this is, the fleet is composed by vehicles

that are allowed to have different costs and capacities (Baldacci et al. [48]). In the HFVRP the cus-

tomers can only be served by one vehicle and the total demand of the customers visited by a vehicle

must not exceed the vehicle capacity. Customers can also have restriction on the types of vehicle that

are allowed to visit, this is called Site-Dependent VRP (SDVRP) (Baldacci et al. [48]). The main objective

of the HVRP is the minimization of the total routing cost (Golden et al. [49]).

The HFVRP is considered a ”rich” VRP, more similar to real-life problem (Baldacci et al. [48]), HFVRP

increase flexibility in distribution planning (Penna et al. [50]) and fleets in the industrial sector are rarely

homogeneous (Penna et al. [50]). There are different variations for the Heterogeneous problem, those

are enunciated in Baldacci et al. [48]. The most important Heterogeneous problems are the HFVRP with

unlimited fleet, also know as Fleet Size and Mix (FSM) first introduced in Golden et al. [49] in 1984, and

the HFVRP with limited fleet, also know as Heterogeneous Vehicle Routing Problem (HVRP) introduced

by Taillard [51] in 1999. The complete mathematical formulation can found in Baldacci et al. [48].

In the literature both Golden et al. [49] and Taillard [51] used heuristics to solve the HFVRP. Semet

and Taillard [52] used a Tabu Search method to solve the HFVRP with unlimited fleet, and in Baldacci

et al. [48] can be seen how different authors using both heuristics and metaheuristics solve the FSM and

the HFVRP.

2.3 Different ways to solve the vehicle routing problems

2.3.1 Exact Methods

Exact algorithms are the ones that search all the research space until the optimal solution is found.

These algorithms often require large computational time, which generally makes it impossible to solve
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large-scale problems. Normally VRP’s are modeled and solved using Integer Linear Programming (ILP)

[53]. Some of the most common exact algorithms to solve the VRP are going to be explain next.

Branch and bound (B&B)

The Branch and bound (B&B) is an algorithm that was first introduced in 1960 by Land and Doig [54].

This algorithm has the objective of solving discrete and combinatorial optimization problems and find

the optimal solution [55]. The B&B consists in dividing the initial problem in sub-problems and solving

each using some relaxations such as Assignment Problem, Shortest Spanning Tree and more recently

Lagragian Relaxations (Toth and Vigo [7]). The B&B is divided in 3 parts the Branching, select the sub-

problem that was creating more recently; the Bounding, for each sub-problem find the solution applying

the relaxation; and Fathoming, compare the value obtain with the bounds and discards the ones that

do not fit it. When all the sub-problems are solved the lower bound is the optimal solution (Hillier and

Lieberman [56]).

The B&B is solved more efficiently the better the lower bound is calculated because less sub-

problems fit the Fathoming condition. Some of the relaxations and lower bounds can be seen in Toth

and Vigo [7], where the B&B was used extensively to solve the CVRP. In Laporte and Nobert [57] a VRP

is solved using B&B and in Toth and Vigo [33] an B&B algorithm is used again to solve the VRPB.

Branch and Cut (B&C)

The Branch and Cut (B&C) is an extension of the classic B&B, that is normally used when the number

of constraints is big enough that the relaxation of the problem can not be solved using a simple Linear

Programming (LP) algorithm and a Cutting Plane technique has to be used to solve the LP (Naddef and

Rinaldi [58]). The Cutting Plane Technique consists in using a subset of the initial problem and solving

the LP relaxation. If the LP is not feasible in the original problem, a new constraint is created, the size

of the subset is increased and a new sequence is made until the LP relaxation is feasible in the original

problem and the optimal is found (Naddef and Rinaldi [58]). The main objective of the Cutting Plane

Technique is to add new constraints near the optimal feasible solution which makes the problem easier

to solve. If an optimally solution is not found the problem is divided in two, for example doing an upper

and lower bound to a variable, and the (B&B) algorithm is applied.

In Laporte et al. [28] it is possible to see the SVRP being solved using the B&C algorithm, reaching a

optimal solution in different scenarios with a maximum of 20 cities. In Archetti et al. [23] a B&C algorithm

is also used to solve the SDVRP and the optimal solution can be found for a problem with 100 cities.

New upper bounds were found in different proposed problems.

2.3.2 Heuristics

Heuristics are algorithms that only exploit a subset of all the possible solutions and because of that

near-optimal solutions are not always found. For the reason previously explained, heuristics algorithms

find good solutions in reduced computational time, so large problems can be solved in reasonable time.
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The heuristics for the Traveling Salesman Problem (TSP) can be divided in 3 types, and this division can

also be apply to the VRP: construction procedures, improvement procedures and composite procedures

[46, 59]. Some of the most common algorithms for the VRP will be explained next.

Saving heuristic of Clarke and Wright

The Saving heuristic was first introduced by Clarke and Wright [1] in 1964. This heuristic was originally

developed for the VRP and is one of the best route construction algorithms in the literature [46]. The

Saving heuristic begins with all the customers being served individually by a dedicated vehicle. After is

calculated what is the saving of combining two routes i and j, Sij = di0−d0j−dij , and are connected the

two customers that have the bigger Sij , always ensuring the feasibility of the solution. This process is

done iteratively until there are no more positive savings. The savings can only be applied to customers

that are connected to the depot, not being possible to use nodes in the middle of the route. The algorithm

can be used to improve the total distance traveled, by forming partial routes, or to minimize the number

of vehicles used, in this case the algorithm is used until the vehicle is fully loaded.

Even though the Clarke and Wright method was developed for the VRP, many authors extended

the algorithm to be used in different problems. Solomon [43] improved the algorithm to be used in the

VRPTW by adding a parameter of the time window of the customers in the saving cost, Sij , taking into

account that two costumers can be close in space but distant in time. Tillman [26] and Deif and Bodin

[32] also adapted the algorithm to solve the SVRP and the VRPB respectively. In 2007 Liu et al. [12]

used the Saving heuristic to do the initialization of a Hybrid Genetic Algorithm to solve the MDVRP.

Nearest Neighbor (NN)

The Nearest Neighbor (NN) is an algorithm that starts every new route by finding the unsigned customer

that is closer to the depot, in each iteration the NN finds the closer unsigned customer that can form a

feasible solution from the last signed customer and adds that node to the end of the route. When there

are no more feasible solutions a new route is started in the depot until all the costumers are already

signed to a route. A variation of the NN, Time-Oriented Nearest-Neighbor Heuristic, is formulated for

the VRPTW where both the distance and the temporal closeness are considered, two costumers can be

close in space but distant in time (Bräysy and Gendreau [46], Solomon [43]). In Liu et al. [12] the NN

algorithm is used to initialize the first generations of a Genetic Algorithm.

Local Search (LS)

The Local Search (LS) is an heuristic based on improving the current solution iteratively by exploring the

neighboring space. To design the algorithms is necessary to first generate an initial solutions, after is

necessary to know how the exploring will be done and finally what is the stopping criteria [46]. Normally

the exploring is done by applying k-exchange, replacing k edges by another k edges. In Shaw [60]

a Local Search in applied to the classic VRP and good results are achieved, in Potvin and Rousseau

[61] different Local Search algorithms have been tested for the VRPTW also achieving good results. In
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Bräysy and Gendreau [46] an extensive research on the Local Search, mostly applied to the VRPTW,

can be found.

2.3.3 Metaheuristics

The metaheuristics are algorithms that try to explore local improvements by exploring the current best

solutions and at the same time try to escape from local optima by looking for new solutions in the search

space. The metaheuristics as a concept were first introduced in 1986 in Glover [62]. Due to their nature

these algorithms are able to provide near-optimal solutions to large problems in reasonable computing

time (Gendreau et al. [63]).

Genetic Algorithm (GA)

The Genetic Algorithm (GA) was developed in the 60′s by Holland et al. [64] and is a stochastic opti-

mization technique. The GA is based on natural evolution following Darwin’s theory (Nazif and Lee [9]),

where a population of individuals are maintained and a reproductive process occurs where the individ-

uals with the best fitness are more likely to survive and reproduce (Baker and Ayechew [65]). First of

all to start the GA is necessary to represent each individual by a string (chromosome), which is one of

the critical issues (Anbuudayasankar et al. [66]). The chromosomes with the best fitness are more likely

to be chosen to generate new solutions (offspring), this process is called selection. To generate those

solution normally two operations are used, crossover and mutation. The crossover attempts to combine

the genetic information of two parents, so the offspring have information from both parents and that

combination can lead to solutions with better fitness. The crossover can be compared to a Local Search

(LS) (Ho et al. [67]) and sometimes the crossover is replaced by a LS this hybridization is called Memetic

(Prins [68]). The mutation operation is the one that normally avoids the convergence to a local minimum

by maintaining the diversity (Holland et al. [64]). This operation normally selects one chromosome and

changes part of its original state, one classic mutation is to change a bit to its inverse. In every iteration

exists a population of individuals that are used to reproduce, and the individuals with the best fitness

will tend to be in the next generation, with this the mean fitness of the population will tend to improve in

every iteration.

The Genetic Algorithms applied to the VRP’s are not one of the most used methods in the literature.

In Baker and Ayechew [65] a GA is used to solve the classic VRP achieving results almost as good

as using the Tabu Search (TS). In Chand et al. [69] a Genetic Algorithm is used to solve the VRP with

multi objective achieving high quality solutions. In Ho et al. [67] an hybrid GA was used to solve the

MDVRP and concluded that initializing the population using a constructive method allows to achieve

better results. Tasan and Gen [70] also used the GA to solve the PDVRP performing well and efficiently.

The GA shows to be a competitive method to solve large combinatorial problems in terms of time

and solution quality (Baker and Ayechew [65]) and can be a simple and effective method (Prins [68]).

The GA is also an algorithm that that is well suited for multi objective optimizations problems.
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Tabu Search (TS)

The Tabu search (TS) was first introduced in 1989 in Glover [71] and is a local search methaheuristic

designed to solve combinatorial problems. Tabu Search is based on looking for the best solution in

a subset of its neighborhood, N(s) of the currently solution S. The solution may be worse from one

iteration to the other, this happens because there is a list of temporary forbidden moves to avoid cycling,

tabu list (Cordeau et al. [14]). Some moves are possible even if they are in the tabu list if they reach

some aspiration level, normally the aspiration level is reached when the current move is better than

the best solution found yet (Cordeau et al. [14]). The moves are normally divided in two categories,

intensification where the current solution is improved and diversification where a new neighborhood is

explored, for example by penalizing the most frequent moves. Finally an initialization is normally used

to begin the algorithm, a generalized insertion procedure, GENI heuristic, is some times used for this

purpose (Archetti et al. [22]).

The TS is one of the most used algorithms to solve the VRP variations, since the VRP can be

formulated in a way that the use of the TS is almost straightforward. The Tabu Search is also very used

on the VRP variations due to be one of the algorithms that gives better results. In Cordeau and Laporte

[72] the TS is used to solve the PVRP and the SDVRP, in Cordeau et al. [14] a PVRP and a MDVRP

are also solved. In Archetti et al. [22] a Tabu Search is used to solve the SVRP. All the TS literature

previously listed achieves good results.

The TS is a complex and time spending algorithm even if is one of the most used methods to solve

the VPR’s, so a difficult implementation with various set up parameters, like the way to use the taboo

list, is necessary to achieve good results for the solution not to get stuck in a local optimal.

Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) is a population based approach that was first introduced by Dorigo

et al. [73] in 1996 and is based in real ant behavior in the search for food (Reimann [27]). The ACO is

based on having a population of artificial agents that leaves pheromones when they move, the more the

ants follow a trail the more attractive it becomes, more pheromones will be left in that trail (Dorigo et al.

[73]). The probability of choosing a solution is normally based on the pheromones and on some heuristic

information, gradually the weight of pheromones gets stronger and all the ants tends to to converge to

the same solution (Balseiro et al. [74]).

The ACO was already been used is different variants of the VRP showing successful results (Reimann

[27]). In Tang et al. [75] a variant of the Ant Colony is used to solve the SPVRP, in Reimann [27] the

algorithm is used to solve the SVRP and in Balseiro et al. [74] and Kalayci and Kaya [76] the VRPB and

the VRPPD are solved respectively.

The ACO is not advised to be used for the VRP when the number of vehicles are fixed, for that two

types of ants must be used, one for the number of vehicles and another for the route total length tour,

also called cluster first and route second (Gajpal and Abad [34]). An hybridization with Local Search is

also some times used to improve the results [34, 74, 76].
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Chapter 3

Problem formulation

As it was explained before the main objective of this thesis is to solve a real routing problem proposed

by the company Worten in about 2/3 hours. This problem is specific and not yet solved, for that reason

is necessary to know in detail how does the different parts of the logistics works to be possible to define

and model the problem, and with that solve it.

In the rest of the chapter is going to be introduced the different characteristics of the optimization

problem, the logistics, the customers, the pallets on the depot, the reverse logistics and the feasibility

of the solution. After a comparison with the theoretical models introduced in chapter (2) is made, and a

mathematical formulation of the problem is introduced. Finally, in the end of the chapter, a small example

to gain some sensibility of the model is done.

3.1 Problem Description

3.1.1 Logistics

The first thing that is important to do, before starting the construction of the algorithm, is to define the

problem. For that the transportation logistics is going to be analyzed.

The main objective of Worten is to minimize the total transportation costs. Minimizing this cost is

equivalent to minimizing the fee paid to the company that is subcontracted to make the deliveries. To be

able to fulfill this objective it is necessary to know how the shipping company is subcontracted. The fleet

of the shipping company is composed by different vehicles, those vehicles have a maximum capacity

of 33 pallets and can also have or not a support platform. This platform is mandatory if the customer

does not have one of his own, this is, if a customer does not have this platform the vehicle that visits this

customer must have this component.

Three subcontracting models were studied:

• The company only pays for the pallets that are shipped. In this case all the risk of bad route

planning is on the shipping company because the inefficiency is not being payed. This results in a
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larger tariff for the pallets shipped by thw shipping company;

• The company pays for the pallets shipped with the difference that a dynamic adjustment is made

according to the inefficiency. In this case the risk of bad route planning is both Worten and the

shipping, because the pallets are paid by the unit, but if the vehicles are almost empty an extra

price must be included. This make the tariff smaller than in the first case;

• The company pays the full truck (Full Truck Load). In this case all the risk of bad route planning is

in Worten because the inefficiency of the vehicle have a direct impact on the price of each pallet,

because the price of the vehicle is the same if the vehicle is fully loaded or not.

The type of subcontracting that is going to be implemented to build the routes is the third one. The

Full Truck Load is going to be used because the main objective is to find a way to optimize the price

paid to the shipping company. If the first hypothesis was chosen there would be no need to optimize the

inefficiency of the vehicles. If the second hypothesis was chosen there would be only need to optimize

the average monthly inefficiency. Choosing the third hypotheses it is guaranteed that the price per pallet

is going to be minimized regardless of the type of tariff chosen.

The vehicle prices depend on different characteristics, the zone that the truck goes (it is assumed,

that if he visit more than one zone, the price is of the more expensive one), the number of stops made

and if it is an open or a close route, if the vehicle returns to the depot or not, a more complete explanation

is made in the subsection (3.1.5).

3.1.2 Customers

The customers that need to be supplied by the company are the different stores of Worten, and not only,

that are divided all over the country. The demand of the customers is the products that are order by each

store to the depot. The fleet that is subcontracted must supply a total of at most 713 customers. Each

customer is located in a different place in Portugal, that can be obtained by its Geo-reference (latitude,

longitude), and they are divided in 7 zones, as said before the price of the vehicle depends on the zone

that each trucks goes, the different zones can be seen in figure (3.1):

Figure 3.1: Division of zones in Portugal regarding vehicle prices
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The most expensive zone is the zone A7 that contains Bragança and Vila Real, followed by the zone

A5 that contains Braga and Viana do Castelo. The cheapest zone, is the zone A1 which contains Lisboa

and Santarem. The other zones all have the same prices with a small variance, and the value is around

the middle of the prices of the cheapest and more expensive zones.

The retail business is very sensitive to seasonality. According to Worten data the demand of the

customers follow a curve that can be divided in 4 big periods. In the beginning of the year the demand

of each store is lower that the mean of the year and the curve decreases gradually until the summer. In

the beginning of the summer an exponential growth appears, after the summer the curve decrease s(not

as much as in the beginning of the year) until November, where Black Friday appears and a rise can be

seen again. In the end of the year the curve begins to decrease once more. The curve can be seen in

figure (3.2).

Figure 3.2: Demand variation of a typical store during the year

In those 4 periods the costumers are normally served in specific days of the week and only on those

days, so a periodic supply could be applied. Since the main objective is to minimize the costs of the

vehicles hired daily, and since the service days change with the period of the year, an optimization based

on planning the routes daily is going to be applied.

Other two things that are important to know about the customers are that when a vehicle arrive to

a customer, the customer must be ready for the delivery because some workers must be allocated to

pickup the products. Due to that a time window is defined for each costumer and the vehicles can only

arrive during that time window. The time window is defined by an Early Possible Time (EPT), if a vehicle

arrives before that time a waiting time is allowed, counting this time as working time and not break

time, and a Latest Possible Time (LPT), in this case if a vehicle arrives after this time the solution is not

feasible. Unlike the service days, the time window of a store is fixed during the year and due to that,

the time window can be considered a property of the customer itself. A table type with the customer
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information can be seen in table (3.1).

The last thing that is important to mention is, in order to increase the mean occupation rate of the

vehicles, the customers of Worten can be merged with the customers of 4 other companies of Sonae

Group, Sportzone, Modalfa, Zippy and Continente. This merge is only possible because the products

that are shipped for the different types of customer are identical and have the same shipping rules,

therefore it is possible to consider that the different customers are all from the same company. This

strategy allow to increase the mean occupation rate because a more flexible system is created. A

system with 99 customers has more flexibility to be optimized that 3 others with 33 customers each.

This merge has another positive point, due to the different types of customers that belong to the same

parent group, Sonae, some of the customers are in the same place, that allows to reduce the number

of customers from 713 to 491, if two or more customers are in the same place it can be considered that

only one customer that a demand equal to the sum of all demands. This allows to decrease the fixed

time that each vehicle spends on the customers by decreasing the number of stops made, and therefore

the amount of paperwork necessary. This also allows to minimize the total distance traveled because if

the algorithm don’t put the customers of the same cluster on the same route the total distance traveled

will increase fairly. In conclusion this method allows to increase the mean occupation rate and therefore

the price paid to the shipping company decreases.

3.1.3 Pallets on the depot

Leaving some pallets on the depot is one strategy that occurs in many real situations on the industrial

and logistic sector, which allows large savings. This strategy is already being applied in the design of

the current routes so it is really important to apply it in the algorithms.

Pallets on depot is when some pallets of the demand are left in the depot to avoid to subcontract a

new vehicle in order to bring those few remaining pallets to the customer. This strategy can only be used

if the type of sector and type of industry allows it, in this case is possible to leave some pallets on the

depot and later deliver them. This strategy allows large savings because if some pallets are left on the

depot it is possible to avoid hiring extra vehicles. The pallets that are left on the depot are going to be

stored again, and are going to be shipped in the next possible delivery, along with the demand of that

delivery.

One example is, if a customer has delivery days at Mondays and Wednesdays, and in Monday there

is a demand of 34 pallets. Since the maximum number of pallets in a vehicle is 33, it make no sense to

subcontract a new vehicle in order to deliver only one pallet. The best solution is to leave in the depot

one of the 34 pallets and add that pallet to the demand of the next delivery (Wednesday).

The way to model this strategy is to allow the vehicles to delivery a capacity greater than their

maximum capacity (in this case is going to be considered an extra capacity of 2 pallets per vehicle),

so if a vehicle have a maximum capacity of 33 pallets, when the design of the route is being made, a
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route that has a maximum demand of 35 pallets is feasible, where 33 pallets can be supplied and two

must stay at the depot.

With this strategy 2 problems arise, the first being the maximum number of pallets that is wise to

leave in the depot. This number depends directly on price of leaving the pallets on depot, and the way to

calculate this price is not straightforward. This price depends on the price of storing and on the ”price”

of customers dissatisfaction. Using some common sense is possible to find a range for this price. Is not

wise to have a route that has a demand less than 10 pallets, also it is not wise in leaving 20 pallets or

more on the depot. A range that can be apply is [PriceCar/20, P riceCar/10], if the vehicle with capacity

of 33 pallets in the more and less expensive zone is used it is obtain [8.75, 64]. This price must also be

added to the price that Worten is going to spend on the shipping. The price chosen to run the algorithm

was 20e, due to be business requirements.

The other problem that comes up with this strategy is which are the pallets that are going to be left

in the depot and from which customers, recall that a route can have more than 1 customer. To solve

this problem Hamilton’s Method can be used, that divide the number of pallets on depot by the different

customers having into account the demand of each one, however Hamilton’s Method only gives the

number of pallets that each customer should leave in the depot and not which ones. This process must

be done by the internal network of Worten that knows what are the palettes that need to be shipped and

what are the ones that can wait until the next delivery. For that reason the only thing the algorithm must

do is to find the number of pallets that must be left in the depot in each route, and later it is decided

which ones.

3.1.4 Reverse logistics

The reverse logistics is other aspect that is necessary to implement when designing the model. The

reverse logistics is the transportation of the products from the customer to the depot and not the other

way around. This is some products need to be supplied to the customers, also called direct logistic, and

some products need to be pickup from the customer, called reverse logistic.

The reverse logistics is a necessary aspect in this problem because due to the type of sector some

pallets must come back to the depot. Those pallets can be of old material that was not sold and is

outdated, products that had some defects and need to be sent to the factory, products that were supplied

in the wrong address or simply devolutions.

The reverse logistics can be modeled in two different ways:

• Some vehicles are dedicated to do only the reverse logistics, to pickup pallets from the customer

to the depot, ”broom cars”;

• When a vehicle arrives at a customer both the direct and the reverse logistic are made, this is, the

same vehicle can do both the delivery of the demand and pickup the products from the customer

to the depot.

In the first type of reverse logistic, ”broom cars”, it is considered that the direct and the reverse

logistics are fully independent. This allows a substantial reduction of computational time because it is
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only necessary to solve an identical problem twice and that can be solved in parallel. Note that the

dimensions of the reverse logistic are much smaller than the dimensions of the direct logistic, due to that

the number of vehicles necessary is also much smaller.

In the second type of reverse logistic it cannot be considered the direct logistics independent from

the reverse logistics. In this case the time to delivery the demand of a customer depend on the number

of pallets of reverse logistic that are already in a vehicle.

Next is considered an example of a vehicle that needs to supply 3 different customers:

Figure 3.3: Example of simultaneous pickups and delivery

In the first customer the time spend on doing the delivery is only the time of unloading the demand

and loading the pickup. In the second customer the time spend is equal to the time of unloading the

pickup of customer 1 plus the time of unloading the demand of customer 2 plus the time of loading

the pickup form customer 1 and 2. In the third customer the total time is equal to the time of unload the

pickup from customer 1 and 2 and the demand of customer 3 plus the time of loading the pickups form 1,

2 and 3 into the vehicle again. Due to this dependence between delivery and collection the computation

time necessary to calculate the solutions is going to increase substantial because the solution depends

on both the pickup and the deliveries, and the number of possibilities increase fairly.

It is going to be implemented the ”broom cars” in the algorithm because it is the way that it is imple-

mented by the company in reality. Other thing is, since the demand of reverse logistic is much smaller

than the demand of direct logistic, the saving in using the second method would not be relevant due to

the large increase in computational time, since the final algorithm needs to be run under 2/3 hours.

3.1.5 Vehicles

The operation of the vehicles is also an important aspect to design a correct model. The vehicles that

are used to supply the demands of the customers of Worten, are the ones that are subcontracted to a

shipping company, for that reason is necessary to analyse the fleet of that company. The fleet of the

shiping company is composed by vehicles with 33, 24, 16 and 12 of maximum capacity. Worten only

subcontracts the vehicles that have a maximum capacity of 33 pallets for the big and normal flow of the

demands of the customers. If a special delivery is necessary , another company is subcontracted to do

it. The efficiency of each vehicle is calculated by dividing the number of pallets that a vehicle delivers by

its maximum capacity, just like in equation (3.1).

η =
Number pallets delivered

Maximumcapacity
(3.1)
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The vehicles can now be subdivided again in two, those who have a platform and those who do

not have one. As it was said before this platform is only necessary if the customer that will be visited

does not have one. Since most of the customers have the required platform the number of vehicles that

need to have the platform will be much smaller than the other ones. Since the vehicles are going to be

subcontracted it can be assumed that the capacity of the fleet is infinite.

It is assumed that vehicles travel at mean velocity of 80 km/h, they travel faster in the freeways but

a slower within cities. To calculate the distance, and consequently the time between two customers,

is used an approximation that assumes that the distance between two customer is straight. Later a

correction factor is apply since vehicles need to travel on roads and the roads are not always straight.

The straight distance is going to be calculated using the geographic coordinate of each customer, and

with:

a = sin2(∆φ/2) + cos(φ1).cos(φ2).sin(∆λ/2) (3.2)

c = 2.atan2(
√
a,
√

1− a) (3.3)

d = R.c (3.4)

Where φ is the latitude, λ is the longitude, R is earth’s radius (mean radius = 6,371 km). Note that

the angles need to be in radians to pass to trig functions [77]. With the straight distance calculated is

applied a factor of 1.23, this factor was found comparing the straight distance with the real distance of

the routes.

It is also assumed that each vehicle spends a fixed time of 35min per customer, this time is spend

on stopping and filling the paperwork, plus a variable time of 1mim/pallet. This is the time that it takes

to unload the demand of each customer. The vehicles already have the demands of the customers by

order of arrival when it leaves the depot, for that reason it is only necessary to take time to unload the

respective demand of each customer. The process of loading pallets on the vehicles is done in the depot

before the departure of the vehicle and arrival of the conductor, so not waiting times are considered here.

Finally a vehicle is able to do an open or a close route. This is, if a vehicle is able to return to the

depot after all the deliverers are hand over without violating any of the restriction, a close route is made.

In another way if at least one of the restrictions is violated due to the return of the vehicle to the depot,

an open route must be made and an extra fee is paid, corresponding to 50% of the vehicle value. Note

that all the restrictions are present in the next subsection (3.1.6).
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3.1.6 Feasibility

In this subsection is going to be analysed when a route is feasible or not. This is a very important aspect

because the algorithm implemented may have some randomness and may try to create routes that are

not feasible, so a way to evaluate if the routes created are feasible is necessary.

Since the routes are going to be made in Portugal, the routes first of all need to fulfill the European

legislation [78]:

• A daily driving period of no more than 9 hours;

• A total accumulated duty time of no more than 13 hours;

• A 45 minutes break after 4.5 hours of driving;

• Service times at customers are not considered as break time.

The daily driving period is the time spent in transporting the vehicle. This time does not have into

account the waiting time. Since the maximum daily driving period cannot be bigger that 9h and some

routes takes more than 4.5h to arrive to a customer, a close route (the first and last stop are the depot)

is not always feasible, so an open route must be applied. This is, if the vehicle does not return to the

deport after the last customer, an extra cost of 50% on the cost of the vehicle must be added to that

route. An open route will always be applied when a close route is not possible.

The total accumulated duty time is the sum of the daily driving period plus the waiting time and the

working times. The working time has a fixed time per stop of 35min, time necessary to complete the

documentation, and a variable time of 1 min/pallet, depend of the number of pallets that are unload. If a

customer have a demand of 10 pallets, the vehicle will be stop for 45min at that customer, 35min for the

paperwork and 10min to unload the pallets.

For a route to be feasible is also necessary to comply with the restrictions of reality. The capacity

delivery must not be bigger that the maximum capacity of the vehicle. A customer can only be visited

by a vehicle that can fulfill the restriction of the customer, like it was referred in subsection (3.1.2). A

customer can only be visited during the time window, if a vehicle arrives before the time window a waiting

time at the customer is allowed, otherwise the route is considered not feasible. The maximum number

of pallets that can be left in the depot by a vehicle is two.

In resume, a route can only be made if is feasible and for a route to be feasible all the restriction

mention above must be fulfilled. If the algorithm arrives to a solution that does not fulfill at least one of

the restriction above, it must be considered not feasible and be discarded.
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3.2 Site-Dependent Vehicle Routing Problem with Hard Time Win-

dows

In this section a comparison between the different types of the Vehicle Routing Problem (VRP) that were

introduced in chapter (2) and the logistics that is made by Worten, that were introduce in the beginning

of chapter (3) is going to be made.

In subsections (3.1.1) and (3.1.5) it was possible to see that each customer is only allowed to be

supply by some types of vehicles this is, some customers must be supply by a specific type of vehicle.

In subsection (2.2.9) it was explained that when the customers have restrictions on the type of vehicle

that is allowed to visit the problem is called Site-Dependent VRP. A Periodic VRP (PVRP) (2.2.3) could

be applied since the year can be divided in 4 periods like it was explained in (3.1.2), but since the

demands of the customers are only obtained in the day before the delivery, an algorithm that solve the

problem daily must be used. VRP with Backhauls (VRPB) (2.2.6) could also be applied once it exists

both delivers and pickups but like it was explain in subsection (3.1.4) the deliveries and the pickups will

be modelled independently. In subsection (3.1.2) was introduced that each customer has a fixed time

window to be supplied so a VRP with Time Windows (VRPTW) (2.2.8) must be applied. Finally it was

explain in subsections (3.1.1) and (3.1.3) that the vehicles have a maximum capacity, and the way to

modelled the pallets on the depot is also going to be model as a maximum capacity, so an Capacitated

VRP (CVRP) (2.2.1) must also be applied, where the pallets on the depot is a soft constraint.

This problem can be called Site-Dependent Vehicle Routing Problem with Hard Time Windows (SD-

VRPHTW) and Independent Pickups. This is not a very studied problem with only 2 paper found in the

literature [72, 79], and only one with hard time windows [72].

3.3 Mathematical Formulation

In this section will be presented a mathematical formulation of the model that was presented in the

previous section.

The formulation is going to be adapted from Cordeau et al. [45] where a VRPTW is presented, from

Baldacci et al. [48] where a HVRP is presented and from Toth and Vigo [7] where a classic CVRP

formulation is presented.

To present the formulation a graph is used, G(N ,A), where A is the arc set that is indicated by mean

of the end points i, j ∈ N andN = {0...n} is the vertex set where i=0 is the depot node and i = {1...n} is

the set of customers that must be served. To serve the customer a fleet that is composed by m different

vehicle where, k ∈ V = {1...m} will be used. All Decision variables and parameters that are used on the

mathematical model are stated below.

• Xk
ij - Binary variable, 1 if j is supplied after i by a vehicle k, 0 otherwise;

• di - Demand of customer i ;

• ai - Pallets that were not supplied to customer i ;
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• si - Pallets that were supplied to customer i ;

• Qk - Maximum capacity of vehicle k ;

• Pk - Maximum number of pallets that may not be supplied in one route;

• Pt - Maximum number of pallets that may not be supplied in total;

• Y k
ij - Quantity supplied to customer i when j is supplied after i by a vehicle k ;

• Ck - Cost of a vehicle k ;

• Cpal - Cost of leaving one pallet in the depot;

• Ei - Earliest time that a customer i can be supplied;

• Li - Latest time that a customer i can be supplied;

• Bk
i - Exact time of service at each point i by vehicle k, 0 if vehicle k did not supply customer i ;

• tkij - Time that a vehicle k takes to go from customer i to customer j ;

• Tf - Fixed time that a vehicle takes when supplying a customer;

• Tv- Variable time that a vehicle takes when supplying one customer;

• Dk
i - Binary variable, 1 if vehicle k can supply customer i, 0 otherwise;

• Ok - Cost of a vehicle k do an open route;

• Cstop - Cost of a vehicle making a stop in a customer.

The first thing that is necessary to define is the objective function, present in (3.5) it has the objective

of minimizing both the subcontracted cars, the number of pallets that are left in the depot, the number

of open routes and finally the number of stops, all the parts are represented in euros. The smaller the

combination of those factors, the smaller the objective function. A cost in euros is added for every type

of car that is subcontracted, for every stop made, if a route is open instead of close and finally for every

pallet that should be supplied and was left in the depot.

Min
( m∑
k=1

n∑
j=1

Xk
0jCk +

n∑
i=1

aiCpal +

n∑
j=1

n∑
i=1

m∑
k=1

(Xk
0j −Xk

i0)Ok +

n∑
j=1

n∑
i=0

m∑
k=1

Xk
ijCstop

)
(3.5)

Equation (3.6) guarantees that a costumer can be visited once and only once from a vehicle and that

vehicle can only come from one other node.

n∑
i=0

m∑
k=1

Xk
ij = 1 j = 1...n (3.6)

In equation (3.7) it is guaranteed that the vehicles are able to do only one route per day.

n∑
j=0

Xk
0j = 1 k = ...m (3.7)
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In the expression (3.8) it is ensured that the demand of all customers visited by a vehicle k cannot

be larger that the vehicle capacity.

n∑
j=1

n∑
i=0

sjX
k
ij ≤ Qk k = 1...m (3.8)

In equation (3.9) is guaranteed that what is delivered to a customer must be equal to the demand of

the customer i less the number of pallets of the customer i that are left in the depot. It can be noticed

that from equation (3.6) that only one vehicle can supply a customer i, so the total quantity supplied is

only supplied by one vehicle.

m∑
k=1

n∑
i=0

Y k
ij = dj − aj = sj j = 1...n Y k

ij ≤ Qk (3.9)

In equation (3.10) it is imposed that the number of pallets that are left in the depot by a vehicle k

must be smaller that a predefined constant (Pk ).

n∑
j=1

n∑
i=0

ajX
k
ij ≤ Pk k = 1...m (3.10)

Equation (3.11) is very similar to the previously one with the difference that what must be smaller

that a predefined constant is the sum of all palettes that are left in the depot.

m∑
k=1

n∑
j=1

n∑
i=0

ajX
k
ij ≤ Pt (3.11)

Equation (3.12) guarantees that a route is feasible only if the arrival time at costumer j is such that

allows travel from i to j.

Xk
ij(B

k
i + tkij −Bk

j ) ≤ 0 (3.12)

In expression (3.13) it is assured that the arrival time at the customer i is such that it is not smaller

that the earliest possible time nor bigger that the latest possible time.

Ei ≤
m∑

k=0

Bk
i ≤ Li i = 0...n (3.13)

Regarding the legislation it is necessary to guarantee that the total driving time is not bigger that 9h

(540min), that restriction is made in equation (3.14).

n∑
i=0

n∑
j=0

Xk
ijt

k
ij ≤ 540 k = 1...m (3.14)

Once more regards the legislation it is necessary to assure that the total working time (hours driving

plus hours of unloading the demand of the customers) is smaller that 13h (780min), that is ensured in

equation (3.15).
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n∑
i=0

n∑
j=0

Xk
ijt

k
ij +

n∑
i=0

n∑
j=1

Xk
ijTf +

n∑
i=0

n∑
j=1

Xk
ijTvsj ≤ 780 k = 1...m (3.15)

In equation (3.16) is ensured that the vehicle k that is assigned to the customer i is one of the possible

vehicles that can supply customer i. Once more is possible to notice that from equation (3.6) only one

vehicle is allowed to visit the customer i, this means that Xk
ij is 1 only once.

n∑
i=0

Xk
ij −

n∑
i=0

Xk
ijD

k
j = 0 k = 1...m j = 1...n (3.16)

Finally Xk
ij must be integer, that is assured by equation (3.17).

Xk
ij ∈ {0, 1} (3.17)

3.4 Problem and solution example

In this section is going to be used 5 different customers with distinct characteristics to gain some sensi-

bility on the results given by the model. For that is going to be used three different test sets to see how

the model reacts.

Figure 3.4: Place and time windows of customers used in problem example

In the first test set the demands will be such that the total demand is less than the maximum capacity

of one vehicle, just like is possible to see in table (3.1):
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Table 3.1: Characteristics of the customers in the first test set

Code

Store
Name Store

Zone

Code

Zone

Name
Latitude Longitude

Possible

Types Car

EPT

(Min)

LPT

(Min)
Demand

985 Store 1 1 LISBOA 38.8107 -9.08964 [1,2] 840 960 10

552 Store 2 1 LISBOA 38.83517 -9.15585 [2] 480 600 2

1032 Store 3 1 LISBOA 38.81843 -9.17489 [1,2] 600 720 5

1038 Store 4 1 LISBOA 38.70625 -9.29854 [1,2] 600 720 7

549 Store 5 1 LISBOA 38.75776 -9.22455 [1,2] 660 780 12

In this first test set it is expected to have only one vehicle, once the sum of the demand is smaller

that the maximum capacity of the vehicle (33 pallets). For the solution to be feasible the customer 552

must be supplied by a type 2 vehicle, so it is expected to have only one vehicle of the type 2 to supply

all the customers. Since the algorithm also tries to minimize the path (minimum distance traveled) it is

expected for the route to have no crossed lines.

Running the approach explain in chapter (4), with a number of generations big enough for the solution

to converge, the final solution is:

[[1], [2, [552.0, 1032.0, 549.0, 1038.0, 985.0]]]

Figure 3.5: Chromosome solution of the first test set

Figure 3.6: Route solution of the first test set

Just like it was expected, the chromosome of the final solution (3.5) is only one route, the representa-

tion of the chromosome (3.5) is latter explain in subsection (4.2.1), that is able to bring all the demands

of the customers made by a type of car 2, with the distance travel minimized with no cross path. The
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vehicle begins to supply the customer 552 arriving at 8h. The vehicle departs for the depot at such a

time that arrives at the first customer at the desired time, since the vehicle supply 2 units it spend 37

min there (32m+1*1m). Next the vehicle supplies the customer 1052, since it arrive early than the EPT it

must wait in the customer until it can supply the customer. A similar thing happens to the 3o customer to

be supplied, 549. The fourth customer can only be supplied at 11h45 so a waiting time is not necessary

since the arrival is later than the EPT. Once more customer 985 is supplied in a similar way of the second

customer. Finally the vehicle return to the depot.

For the second test set, the demand will be such that is necessary to use at least 2 vehicles to supply

all the customers, with that we have:

Table 3.2: Characteristics of the customers in the second test set

Code

Store
Name Store

Zone

Code

Zone

Name
Latitude Longitude

Possible

Type Car

EPT

(Min)

LPT

(Min)
Demand

985 Store 1 1 LISBOA 38.8107 -9.08964 [1,2] 840 960 10

552 Store 2 1 LISBOA 38.83517 -9.15585 [2] 480 600 10

1032 Store 3 1 LISBOA 38.81843 -9.17489 [1,2] 600 720 10

1038 Store 4 1 LISBOA 38.70625 -9.29854 [1,2] 600 720 15

549 Store 5 1 LISBOA 38.75776 -9.22455 [1,2] 660 780 12

If once more the algorithm explained in chapter (4) is used to solve the problem we get:

[[1, [549.0, 1038.0]], [2, [552.0, 1032.0, 985.0]]]

Figure 3.7: Chromosome solution of the second test set

Figure 3.8: Route solution of the second test set
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Once more if the chromosome of the final solution (3.7) is analysed, it is possible to notice that the

best solution tends to have at lest two vehicles because the total demand of the customers is bigger that

the maximum capacity of one vehicle (33 pallets), so the final solution must have at least two vehicles

for the solution to be feasible.

In the third and last test set, table (3.3), it will be imposed a time windows to the customer such that

the route will have to cross for the solution to be feasible with only one vehicle.

Table 3.3: Characteristics of the customers in the third test set

Code

Store
Name Store

Zone

Code

Zone

Name
Latitude Longitude

Possible

Type Car

EPT

(Min)

LPT

(Min)
Demand

985 Store 1 1 LISBOA 38.8107 -9.08964 [1,2] 900 1020 1

552 Store 2 1 LISBOA 38.83517 -9.15585 [2] 540 660 1

1032 Store 3 1 LISBOA 38.81843 -9.17489 [1,2] 1020 1140 1

1038 Store 4 1 LISBOA 38.70625 -9.29854 [1,2] 720 840 1

549 Store 5 1 LISBOA 38.75776 -9.22455 [1,2] 420 540 1

Once more using the algorithm explained in chapter (4) to solve the problem, we get:

[[1], [2, [549.0, 552.0, 1038.0, 985.0, 1032.0]]]

Figure 3.9: Chromosome solution of the third test set

Figure 3.10: Route solution of the third test set

Analysing the solution of the last test set figure (3.10) it can be notice that the route does not follow

the shortest distance so that one vehicle is used, because is cheaper to do a longer route than have to

sub-contact another vehicle.
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Chapter 4

Proposed Algorithms

As it was seen in the section (2.3), the literature shows different ways to solve different variants of the

Vehicle Routing Problem (VRP). A Tabu Search (TS) could be used to solve the problem since is one

of the methods that are most used and generaly gives better results. This is a powerful algorithm but

requires substantial computing time (Baker and Ayechew [65]) and since a solution is desierd after 2/3

hours is not very convenient to use it, even if the implemented algorithm is just a prototype.

To solve the problem a Genetic Algorithm (GA) was initially proposed. Using a modify Saving heuristic

to initialize the algorithm and, a Local Search (LS) to improve the solution obtained. Note that this

algorithm is changed later due to poor results, these results are observed in section (5.4) and the new

proposed algorithm is explain later in section (4.4). In figure (4.1) is possible to see the flowchart of the

first propose algorithm.

Figure 4.1: Flowchart of the initial proposed algorithm

The GA was used since it gives competitive results in terms of time and solution quality (Baker and
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Ayechew [65]) in VRP’s, and because it is a relative simple but effective method (Prins [68]). Once

more is stressed that the final algorithm needs to be fast and give good results due to the computational

time constrain. A negative point of the GA is that is necessary to find several parameters but after the

calibration of the parameters the algorithm is able to provide very effective results (Prins [68]). Finally

the GA is well suited for multiple objective optimization (Anbuudayasankar et al.[66]).

To do the initialization a variation of the (Clarke and Wright [1]) is going to be used. Ho et al. [67]

shows that initializing the population using an heuristic leads to better results than initializing the solution

randomly. Another advantage of this initialization is that since the solution is highly non feasible a random

initialization would lead to non-evolution of the algorithm.

To improve the solution a Local Search (LS) is used, based on the crossover of Chand et al. [69].

This crossover requires long computation times therefore it cannot be always used in the GA.

In the rest of the Chapter (4) is going to be explain in detail the three different stages of the initial

algorithm, starting with the initialization heuristic followed by the GA and ending with the improvement.

Finally in the end of the chapter is going to be introduced some changes to the initial proposed algorithm.

4.1 Initialization

Since it is going to be used a Genetic Algorithm, is necessary to initialize the population. Normally the

population is initialized randomly (Whitley [80]) but can also be initialized with a mixed population, where

both random and structured individuals are part of the initial solution. In the VRP literature most cases

use the second method (Baker and Ayechew [65]). In Ho et al. [67] a comparison is done between

a random initialization and an initialization using a build heuristic and it’s concluded that the second

hypothesis achieves a better performance than the random initialization. It is also important to refer that

when the population is initialized randomly, a repair procedure is normally necessary in order to obtain

a feasible solution. An algorithm based on Clarke and Wright [1] was implemented since it is one of the

best construction algorithms (Bräysy and Gendreau [46]). The pseudo algorithm can be seen below,

algorithm (4.2), and an extensive pseudo algorithm can be seen in the annex (A.1).

Figure 4.2: Initial construct algorithm

30



The algorithm starts by receiving the information of the customers that need to be served and their

respective demands. With this information, each customer is assigned to one type of vehicle, this

assignment is made by comparing the price of the vehicles that can supply the customer. The smaller the

price the higher the probability of a customer be served by that type of vehicle. Note that this processes

is not deterministic so each time the algorithm runs a different solution may appear.

After all the customers are assigned to one type of vehicle, an adaptation of the Clarke and Wright

[1] is used to each type of car independently. First an initial solution is made, where all customers

are served independently, one vehicle per customer, and all customers are considered ”not assigned”.

After the ”Saving” matrix of joining one customer to the route of a second customer is calculated. This

”Saving” calculations differs on the original ”Saving” used by Clarke and Wright [1], the original way can

be seen in section (2.3.2). The ”Saving” used in this algorithm is calculated taking into account not only

the distance between the customers but also how far are the customer’s time windows too. The further

they are in space the less likely those customer are to be in the same route and the further they are in

time less likely those customer be in the same route once more. Two customers can be very close in

space but very far in time (Solomon [43]). To calculate the ”Saving” is used:

Sij =
1

C1 + C2
, C1 = dij , C2 = lj − li j = 1...n, i = 1...n (4.1)

Where dij is the distance to go from customer i to customer j and li is the latest possible time that the

costumer i can be served. Note that the ”Saving” (Sij) of insert a customer i in the route of the customer

j is different from the ”Saving” of insert a customer j in the route of a customer i, also a bigger weighting

is given to the customers that have the time window early in time to favor those connection first.

Next the pair of customers that have the biggest ”Saving” are chosen and one of tree things can

occur:

1. Both customers are ”not assign”, in this case customer j is going to be inserted on the route of

customer i, customer i will not be able to be chosen again (Sij → < 0, Sji → < 0, j = 1...n), and

both customers pass from ”not assign” to ”assign”, if and only if the solution is feasible;

2. One of the customers is ”assign” and the other is ”not assign”, in this case the ”not assign” customer

is inserted in the end of the route of the ”assign”, the ”assign” customer will not be able to be chosen

again, and the ”not assign” pass to be an ”assign” one, again if and only if the solution is feasible;

3. Both customers are ”assign”, in this case it is not possible to join the customers, so the customers

can not be chosen simultaneously again.

This process is repeated until there are no more ”Saving” > 0. If the algorithm is run multiple times,

different solutions will be generated. This allow us to initialize the Genetic Algorithm by choosing the

best N solutions, where N is the size of the population used in the GA. This algorithm cloud be improved

to achieve better solutions, but this is not only not necessary but also advised against. Having an initial

solution too optimized could lead to less solution diversity and more difficulty of leaving the current

solutions, this could lead to less flexibility and possible non-evolution of the GA.
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4.2 Genetic Algorithm

The Genetic Algorithm (GA) is a stochastic optimization technique that is used to solve big combinatorial

problems. The principle of the algorithm is explained in subsection (2.3.3). The GA was used due to

getting fast and quality solutions and also due to being well suited for multiple objective optimization

(Anbuudayasankar et al. [66]).

In the rest of this sections going to be explain the chromosome representation and the way to evolve

the algorithm and the different operations used in this GA.

4.2.1 Gene representation

Since the GA will be used to solve the problem as mentioned earlier,first is necessary to find a way to

represent all the relevant information in the chromosome, this representation is one of the critical issue

when developing the GA (Anbuudayasankar et al. [66]). The chromosome representation was based

to the chromosome of Chand et al. [69], the generic way to represent the chromosome is show bellow

(4.3):

Figure 4.3: Generic representation of the chromosome

Were Vtype1 is the type 1 vehicle and Vtype2 is the type 2 vehicle, and Ci..q are the different customer

that are supplied. So in this case the customers Ci..m are the customers that are supplied by vehicles

of the type 1 were Ci..k are supplied by one vehicle and Cl..m are supplied by another vehicle of type 1.

One simple example of a chromosome is represented below:

[[1, [1038.0, 535.0, 520.0, 1087.0]], [2, [1450.0, 982.0, 549.0, 1079.0, 506.0], [985.0, 552.0, 1032.0, 5198.0]]]

Figure 4.4: Example a chromosome representation

In the example of the chromosome is possible to see that the solution is composed by 3 routes
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in total, [1038.0, 535.0, 520.0, 1087.0], [1450.0, 982.0, 549.0, 1079.0, 506.0] and [985.0, 552.0, 1032.0, 5198.0],

where the first route belongs to the type of vehicle 1 and the other two routes belongs to the type

of vehicle 2. Those routes, that are part of the chromosome, can also be considered genes of the

respective chromosome. In this chromosome all information needed to calculate the fitness, and the

feasibility is represented. Note that the chromosome is still encoded, so is necessary the table of the

different customers with their demands to decode the chromosome. An example table is represented

below, table (4.1):

Table 4.1: Example of customers with demands

Store

Code
Store Name

Zone

Code

Zone

Name
Latitude Longitude

Possible

Type Car

EPT

(Min)

LPT

(Min)
Demand

985 Store 1 2 LISBOA 38.8107 -9.08964 [1,2] 600 720 10

552 Store 2 2 LISBOA 38.83517 -9.15585 [1,2] 540 660 2

1032 Store 3 2 LISBOA 38.81843 -9.17489 [1,2] 600 720 5

1079 Store 3 2 LISBOA 38.77804 -9.22063 [1,2] 570 690 2

1038 Store 4 3 LISBOA 38.70625 -9.29854 [1,2] 450 570 7

535 Store 5 3 LISBOA 38.69772 -9.37164 [1,2] 540 660 5

549 Store 6 3 LISBOA 38.75776 -9.22455 [1,2] 540 660 12

1087 Store 7 3 LISBOA 38.8648 -9.32673 [1,2] 540 660 8

506 Store 8 3 LISBOA 38.79705 -9.33008 [1,2] 720 840 11

1450 Store 9 3 LISBOA 38.77488 -9.33906 [1,2] 450 570 6

982 Store 10 3 LISBOA 38.78901 -9.34013 [1,2] 540 660 3

520 Store 11 3 LISBOA 38.76427 -9.3609 [1,2] 540 660 10

5198 Store 12 1 LISBOA 38.72435 -9.15988 [1,2] 840 960 6

1079 Store13 2 LISBOA 38.778036 -9.220627 [1,2] 570 690 1

With the chromosome and with a table similar to table (4.1) is possible to decode the chromosome.

In the example of the chromosome (4.4), the first routes goes from the depot to Store 4, Store 5, Store

11, Store 7 and finally if possible go back again to the depot. The vehicle that does this route will bring

a total of 30 pallets to satisfy the demand of all the customers. If the sum of the demands for one route

is bigger that the maximum capacity of the vehicle, the excess pallets would have to be left in the depot.

With the geographic coordinates is possible to calculate how much the vehicle will travel, this calculation

is explained in subsection (3.1.5). With this information is already possible to see if the set of routes are

possible, using the restrictions (3.6 until 3.17) and who much it costs using the cost function (3.5).

4.2.2 Reproductive processes

The reproductive processes is based on generating new solutions from the chromosomes of a given

population, the new chromosomes are often called offspring and the chromosomes chosen from the

population are often called parents. The offspring is going to inherit some of the characteristics of their

parent (Baker and Ayechew [65]). From a given population some parents chromosomes are going to be

chosen to generate offspring, this selection normally have into account the fitness of the chromosome

of the population, the chromosomes with higher fitness are more likely to be chosen to generate new
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solutions. The process is based on the Darwin’s theory (Nazif and Lee [9]), where the specimen with

better characteristics are more likely to reproduced and survive. In this case, the characteristic to be

preserved and reproduced is the value of the objective function (3.5).

The process of reproduction of new offsprings is divided in 3 sub-processes. The first process,

the crossover, will theoretically converge the solution to a local minimum, this will intensify the existing

solutions. The second process, the sub-tour reverse, will also intensify the existing solutions. The third

process, mutation, have the objective of explore new solutions and diversify the set of already existing

specimen, to search for the global minimum and avoid getting stuck in the local minimum. The way to

choose the chromosomes used will be explained in the next subsection (4.2.3).

Crossover

The Crossover operation used is based on Ho et al. [67] that is based on the classical order crossover

from Cheng and Gen [81]. The steps of the operation can be see bellow:

1. Select two chromosomes from the population;

2. Chose at random a gene, route, of one chromosome;

3. Delete the information contain in the gene on the other chromosome;

4. Insert the gene at random on the receiving chromosome;

5. Change the receiving and giving chromosome and repeat the process.

First of all is necessary to select 2 parents chromosomes in which one of them will receive informa-

tion and another will give information. For sake of simplification the giving chromosome will be called

chromosome 1 and the receiving chromosome will be called chromosome 2. From chromosome 1 a

gene, sub-string, will be chosen at random, similar to a two point crossover. In this case the gene is

always one route of a vehicle. After, the information of the gene chosen from chromosome 1 will have to

be deleted from chromosome 2 in order to ensure that there is no duplicate information. Finally the gene

is inserted in chromosome 2 in a random place, since the gene will always be one route, the important

thing is in which type of vehicle the gene is inserted. This process is repeated where chromosome 1 is

the receiving chromosome and chromosome 2 is the giving chromosome, so one crossover operation

always generate 2 offsprings. Note that the offsprings generated may not be always feasible, for exam-

ple if the gene that will be inserted have a customer that can only be served by a type one vehicle, and

this gene is inserted in a type two vehicle. If in any case the gene chosen from the giving chromosomes

also exist in the receiving chromosome, another gene will be chosen to guarantee that a clone is not

made. It is possible to see bellow in figure (4.5) an example of a crossover operation:

34



Figure 4.5: Example of the crossover operation

The crossover operation will generate new solutions that will tend to a local minimum because by

adding only one route to the chromosome an improvement of the initial solution is possible, but the

improvement of the number of routes will not be very frequent.

Sub-tour reverse

The sub-tour reverse that is used in this GA is based on Nazif and Lee [9], the simplified steps can be

seen bellow:

1. Select one chromosome from the population;

2. Chose at random a gene, route, from the chromosome;

3. Chose at random sub-tour of the gene;

4. Invert the sub-tour.

The sub-tour reverse is very similar to the crossover operator. First is necessary to select a chromo-

some from the population. From the chromosome selected, parent chromosome, a gene is chosen from

the chromosome, just like in the crossover the gene is always a route. After, a sub-route of the route is

chosen, the sub-route can vary from only two elements to the full route. Finally the sub-route chosen

is inverted. The sub-tour reverse operation only need one parent chromosome to generate an offspring

and will generate only one offspring. An example of the sub-tour reverse is illustrated bellow.

Figure 4.6: Example of the sub-tour reverse operation
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Due to the fact that the fitness, equation (3.5), is mostly influenced by the number of tours made, the

fitness of the new chromosome generated will not diverge much from the fitness of the parent chromo-

some, this operation will only be able to improve slightly the chromosome selected, improving the path

of that route. But this operation also create new solutions that later could be improved by applying other

operations.

Mutation

The mutation operation is based in Chand et al. [69], with a small variant, this variation is explain in the

end of this subsection. The simplify steps can be seen bellow:

1. Select one chromosome from the population;

2. Chose at random a gene, route, from the chromosome;

3. Chose at random a customer from the gene;

4. Delete the customer in the original chromosome;

5. Insert at random the customer in any part of the chromosome.

First is selected from the population one chromosome that will be used to do the mutation operation.

Next a gene of the initial chromosome is chosen at random, and a customer from that gene is also

chosen at random. After the customer needs to be deleted from the original chromosome to guarantee

that there is no duplication of the information. Finally the customer selected will be insert at random in

any part of the chromosome. An example is illustrated in figure (4.7).

Figure 4.7: Example of the mutation operation

In Chand et al. [69] two customers are also chosen at random and are swapped, but in this problem

was decided to chose only one customer due to the feasibility of the problem, since there are many

restriction, swapping two customers could lead to more infeasible routes generated. The mutation is the

operation that can lead the algorithm to leave a local minimum and improve the current solution. This

occurs once more due to the fitness, equation (3.5), being largely influenced by the number of routes.

Again to do the mutation is only necessary one parent chromosome and only one offspring is generated.
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4.2.3 Selection process

The selection operation is the process that allows to select the chromosomes from a given population,

normally this selection is based on the fitness function value, equation (3.5). The Selection process can

be divided in two, just like it is possible to be seen in (4.1), the selection of the next population and the

selection of the parents chromosomes that are used to generate new offsprings. Both selections are

based on Ho et al. [67], where a roulette wheel operation is used. The roulette wheel operation was first

introduced in 1989 in Goldberg [82]. This method is a probabilistic algorithm where a ”roulette wheel”

has a size proportional to the fitness for each chromosome of the population. The size of the wheel for

each chromosome, this is the probability of a chromosome be chosen, is calculated using:

Pseli =
1/fi∑Npop

i=1 1/fi
(4.2)

Where fi is the fitness value of the chromosome that is get from equation (3.5).

The first selection operation, selection new population, in made by having a set of solutions where a

chromosome is chosen using the roulette wheel operation at a time until the number of chromosomes

chosen is equal to the desired population size, always guaranteed that clones (identical solution) are not

possible to be chosen. This set of solutions can appear in two ways, in the initialization section (4.1),

where there is not yet a population set, and at the end of each generation where the last population and

the offsprings generated in that generation are merged to generate the population set. In this selection

an extra step is used before using the roulette wheel operation, this step is called elitism where some of

the best solution of the population go directly to the new population without going through the roulette

wheel operation. This guarantees that the best chromosomes always remain in the population ensuring

that the best solution is not lost.

The second selection operation, selection parents, is made always after the genetic operation is

chosen. The genetic operations are chosen with a fixed probability picked in the begging of the GA

and are made until the number of feasible offsprings generated are equal to the desired number of new

solution. After the genetic operation is chosen, the roulette wheel operation is used to chose which is

the chromosome, or chromosomes, selected to be used in the genetic operation.

Using this selecting allows to intensify the current solution since most of the improvements are made

in the chromosomes of the population with the best fitness but also allow to explore new solution spaces

by trying to improve solutions that have a not so good fitness. So using this operation the best solution

are more likely to reproduced and survive, improving of the current solution, but the other solution have

also the possibility to reproduce and survive, exploring the solution space.

4.3 Local Search

The Local Search (LS) is an heuristic based on improving the current solution iteratively by exploring the

neighboring space. The LS that is going to be used to explore the neighboring space is an adaptation

of the crossover of Chand et al. [69]. The steps are enumerated bellow:
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1. Initialize a chromosome;

2. Chose the smallest possible gene, route, of the chromosome;

3. Insert the gene chosen on a list, this gene cannot be selected again;

4. Delete the information contained in the gene in the chromosome;

5. Insert every customer of the gene is the best possible place in the chromosome;

6. If the new chromosome is better than the old one, update the chromosome;

7. Repeat set 2 to 6 until, stopping criteria is met.

The first thing that is necessary to do, to run the algorithm is to initialize one chromosome. This

initialization can be done in the same way the GA is initialized, where the algorithm present in section

(4.1) is run the same number of times as the desired number of chromosomes and the best chromosome

is chosen to initialize the LS. The initialization can also be done by running the GA and choosing the

best chromosome from the last generation just like in flow char (4.1), where the LS is the improvement.

After the smallest possible route, the one that serves the least customers, of the chromosome is

chosen. This is done because the bigger the route, the more likely it is to be a good route with good

efficiency. Next the route chosen is inserted in a list and the routes from that list cannot be chosen again,

this is done to avoid infinite cycles. Then the customers that are contain in the gene chosen are going

to be insert in the place where the fitness of the chromosome is minimized always guaranteeing that the

chromosome is feasible, once more using equation (3.5). If a customer cannot be inserted on any of

the existing routes, a new one is created with that customer. Note that the best place for each customer

individually do not ensures automatically a minimization of the fitness of the chromosome, so if there is

not an improvement on the fitness the update of the chromosome is not done and the next smaller route

is chosen. Finally the algorithm stops when there is no improvement of chromosome for 5 consecutive

iterations. An example of one iteration of the LS can be seen in figure (4.8).

Figure 4.8: Example of one iteration of the Local Search
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4.4 Hybrid Genetic Algorithm (HGA)

The Hybrid Genetic Algorithm (HGA) is an hybridization between the two algorithms that were presented

in this chapter, the Genetic Algorithm (GA) that was introduced in section (4.2), and the Local Search

(LS) that was introduced in section (4.3). This hybridization was made because when the parameteriza-

tion of the proposed algorithm at the beginning of chapter (4), figure (4.1) was made, it was noticed that

the LS was able to improve the solution in a way that the GA was not able because its operations do

not directly take into account the objective function, unlike LS. It is possible to notice this difference of

evolution later in figure (5.2). It was also possible to notice that the LS takes big computational time so if

the reproductive process is replaced by the LS the algorithm will not be able to evolve. For the reasons

given above a new HGA is proposed where the reproduction process varies between the GA reproduc-

tion process, present in subsection (4.2.2), and between an LS variation where only one iteration of the

LS is done to generate a new offspring, like in figure (4.8), from step 1 to step 6. The flowchart of the

new proposed algorithm is represented in figure (4.9).

Figure 4.9: Flowchart of the final proposed algorithm

Since the only thing that changes in this hybridization with respect to the initially proposed algorithm

(4.1) is the manner in which new offsprings are generated, it can concluded that all of the previously

stated characteristics still could be considered, those characteristics are in the beginning of chapter (4)

and in the beginning of section (4.2). Other thing that is also noticeable in the flowchart (4.9) in relation

to the flowchart (4.1) is that the improvement is no longer used, this is due to the fact that by the end of

the HGA the solution is already very close to the optimum, which causes very little flexibility so the LS is

no longer able to improve the current best solution. Those results appear in section (5.4).
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Chapter 5

Results

In this chapter the results of the theoretical models that were presented in chapter (4) will be tested and

compared with the baseline solution that were given and used by the company. First will be introduced

the problem that is going to be solved and the baseline solution. After will be introduced how to code the

algorithms and how the different modules of the code are divided. Next the cumin towards the Hybrid

Genetic Algorithm (HGA) and its sensibility analysis and parameterization will be done to find what are

the best parameters to be used in this concrete problem. In the end of the chapter the final results given

by the different methods will be compared with the baseline solution.

5.1 Problem Data

The baseline solutions are routes planed for weeks 6, 24 and 50. These solutions are only composed

of direct logistics since no concrete data on reverse logistics has been provided. The demands of the

aforementioned weeks are based on forecasts of previous years and weeks, but even so those demands

were heavily analysed by the subcontracted company, and the routes of those weeks were build for those

demand. In short, if the forecast demands were real, the routes that will be analyzed next would be the

routes made by the subcontractor, those routes are the baseline solution.

The forecast was made and analyzed in three different weeks, due to the fact that the demands of

the customers are influenced by seasonality, just like it was possible to see in subsection (3.1.2), so the

year was divided in 3 periods and a typical week of each period was analyzed. The first period, weak 6,

is the period of low volume of demands, the second period, weak 24, is the period of medium volume

of demands, and finally the third period, weak 50, is the period where a high volume of demands is

considered. The weeks have been analyzed Monday through Friday only, as no weekend deliveries will

be made.

It is going to be possible to see in section (5.2) that some of the solutions given by the subcontractor

are not feasible according to the formulation made in section (3.3), and with reality. This happens

because the subcontracted first does a bulk analysis with good efficiencies and later some routes need

to be adjusted. The main infeasibility incurred is the number of pallets that a vehicle can take, there
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are some routes that have more than 50 pallets which is clearly non feasible since a vehicle can take

at maximum 33 pallets and leave at maximum 2 pallets at the depot. To circumvent this unfeasibility

two different type of solutions will be made. The first approach is saying that all the pallets that can

not be carried by the vehicle are going to be left at the depot and a price for each pallet is paid, this

approximation will be called Base1. The second approach is saying that if a vehicle carries mores that 35

pallets, 33+2, another vehicle is going to be necessary to bring the remaining pallets, this approximation

will be called Base2. Other thing that is going to me made in the baseline solutions is to assume that

all routes are closed ones just like it was explained in subsection (3.1.5). This approximation is done

because the data given by the company only have the customers that are supply by a particular vehicle

and not the order that those customers are supplied. To make sure that the fitness is not influenced by

non-existent wait times a close route is assume to all vehicles. Note that this approximation will always

give a better solution than the real one.

5.2 Data Analysis

In this section the data provided will be analyzed, first will be analyzed what are the characteristics of

the problems that needs to be solved and optimized during the three type weeks. Then, the routes that

were provided by the company, the baseline solutions, will be analyzed in the end the section. The first

day of the first typical week is going to be analyse in detail.

In the first day of week 6, Monday, there are 212 different customers that need to be supply that

have a total demand of 757 pallets, so each customer has on average a demand of 3.57 pallets. If it

is considered that each vehicle can bring a total of 33 pallets, there are necessary at least 23 vehicle

to supply all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35

pallets, where two pallets can be left in the depot, there are necessary at least 22 vehicles to supply all

the customers where some of the pallets will not be delivered that day. If we cluster the customers just

like it is explained in subsection (3.1.2) we end with a total of 97 customers with an average demand of

7.8 pallets. The analysis of the other days is summarized in the table (5.1).

If we analyse table (5.1) is possible to notice that the total demand of the customers is bigger in week

50 and is smaller in week 6, just like expected. It is also possible to see that the mean demand of the

customers also changes in the same way in the different weeks. Finally it can be seen that doing the

cluster substantially reduces the number of customers which increases demand media.

Now If we analyse the baseline solution for Monday of week 6, it is possible to notice that 29 vehicles

are used with an average efficiency of 0.79. Note, the way to calculate the efficiency is explain in the

subsection (3.1.5). The baseline solution is the same using first or the second approximation because

all the vehicles carry a total demand lower than the maximum capacity of the vehicle. The fitness of this
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solution using the objective function is 13775e, leaving 1 pallet on the depot. The analysis of the other

days is summarized in the table (5.2).

Table 5.1: Characteristics of the days of the week

Number of
customers

Total
demand

Mean
demand

Necessary
vehicles

(33 pallets)

Necessary
vehicles

(35 pallets)

Number of
Clusters

Mean
demand
cluster

W
ee

k
6

Monday 212 757 3.57 23 22 97 7.8
Tuesday 124 472 3.8 15 14 63 7.49

Wednesday 213 772 3.62 24 23 100 7.72
Thursday 141 525 3.72 16 15 66 7.95

Friday 196 692 3.53 21 20 92 7.52

W
ee

k
24

Monday 169 801 4.74 25 23 104 7.7
Tuesday 128 596 4.65 19 18 73 8.16

Wednesday 233 982 4.21 30 29 115 8.54
Thursday 117 547 4.68 17 16 65 8.42

Friday 132 667 4.05 21 20 81 8.23

W
ee

k
50

Monday 160 1056 6.6 32 31 93 11.35
Tuesday 142 972 6.85 30 28 76 12.79

Wednesday 195 1211 6.21 37 35 99 12.23
Thursday 138 910 6.59 28 26 76 11.97

Friday 148 1017 6.87 31 30 91 11.18

Table 5.2: Analysis of the baseline solutions
Base 1
fitness

Base 1
efficiency

Base 1
pallets depot

Base 1
number cars

Base 2
fitness

Base 2
efficiency

Base 2
pallets depot

Base 2
number cars

W
ee

k
6

Monday 13775 0.792 1 29 13775 0.792 1 29
Tuesday 7375 0.841 0 17 7375 0.841 0 17

Wednesday 14225 0.800 4 29 14225 0.800 4 29
Thursday 8155 0.836 1 19 8155 0.836 1 19

Friday 12835 0.800 5 26 12835 0.800 5 26

W
ee

k
24

Monday 15525 0.782 88 28 16820 0.662 3 37
Tuesday 10145 0.806 64 20 11320 0.644 1 28

Wednesday 21804 0.803 171 31 20850 0.638 2 47
Thursday 9420 0.781 57 19 11050 0.611 2 27

Friday 13950 0.686 68 27 15310 0.602 1 34

W
ee

k
50

Monday 16530 0.887 52 35 17955 0.789 9 41
Tuesday 12995 0.911 40 31 13820 0.807 13 36

Wednesday 18600 0.876 69 40 20625 0.737 9 50
Thursday 12905 0.912 59 29 13540 0.753 13 37

Friday 16745 0.810 11 38 17405 0.777 2 40

In the table (5.2) is possible to note that the fitness of the solutions is almost always smaller when the

first approximation is used, this is when all the extra pallets are left in the depot. Using this approximation

some times leads to a solution where around 10% of the demands are left in the depot, which clearly

cannot be done. Finally is possible to notice that when the second approximation is used the number of

cars used increases substantially and consequently the efficiency decrease but the final solution looks

much more similar to the reality.
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5.3 Brief programming explanation

The algorithms presented in chapter (4) was programmed in Python and run on a computer with a Intel

Core i7-4790 processor with 3.6GHz and a RAM of 8GB. The code used is divided in 4 big parts, the

preprocessing, the initialization the Hybrid Genetic Algorithm (HGA) and finally the Improvement.

The preprocessing has the main objective of receiving the demands from a file, in this case in a

excel, and transform it in a way that the program is able to use all the relevant information given. An

input excel table with the direct logistics and the inverse logistics (if necessary), and a excel table with the

characteristics of all possible customers are read, then a data crossing is done ending with a similar table

as (4.1) for the linehauls (direct logistics) and other from the backhauls if necessary (inverse logistics).

Note, the crossing only adds the demand to the customers table and deletes the customers that have

no demands.

In the initialization the heuristic, that is present in (4.1), is run the same number of times as the

desired number of chromosomes for the initial population, where on each run is generated one and only

one chromosome. The initialization begins to receive in each iteration the table with all the relevant

information from the customers and assign each customer to a type of vehicle having into account the

price of the vehicles. After, for each type of vehicle, the Saving heuristics is run and the set of routes for

that type of car is made. With this an initial chromosome is made.

The HGA begins to receive the initial chromosomes and using the selection process presented in

subsection (4.2.3), the number of chromosomes equal to the size of the population intended is selected.

This is a parameter that needs to be set up. After the HGA is run during some iterations until it reach the

stopping criteria, which is also a set up parameter. In each iteration a predefined number of offsprings,

set up parameter, will be generated. The offsprings will be generated using the reproductive process

presented in (4.2.2) and Local search present in (4.3). Each reproductive processes have a predefined

probability of occurring. After generating the desired number of offsprings, the offsprings and the popu-

lation are merged and a sort is made according the fitness of the chromosomes. This sort is necessary

to do the elitism process where a predefined number of chromosomes. This parameter needs to be set

up, and it will pass directly to the population of the next generation.

The Improvement receives the best chromosome from the HGA and a Local Search (LS) can be

made in order to try to improved the solution. The LS used can be seen in (4.3). Note that the LS can

be fully independent of the HGA, to be able to run the LS is only necessary a solution to be improved,

and the HGA can also be run without the LS.

5.4 Parameters configurations

5.4.1 First Proposed algorithm

To be able to used the proposed algorithm, represented in figure (4.1), applied to our specific problem

is necessary to do the configuration of the necessary parameters, and to know how the variation of the

parameters influences the result. The parameters that are needed to be configured so that the Genetic
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Algorithm (GA) can be used are, the probability of using each of the different reproductive processes,

the number of chromosomes used on the population and the number of offspring generated in each

generation, the number of chromosomes that are part of the elitism, and the stopping criterion. It is not

possible to vary all the parameters at the same time, that would be quite a large number of solutions that

would have to be tested. For that reason the parameters will be set up independently but always using

the parameters that where set up before. To set up the parameters, is necessary to know what is the

order of the parameters that are going to be tested first.

The first parameter that is going to be set up is the probability of the different reproductive processes

to occur, this is the most important parameter to be configured because this parameter will influence

the others largely, due to this being the parameter that changes the way the offspings are generated.

After it will be set up the size of the population used and the number of offspirngs generated in each

iteration. These parameters will influence the way the algorithm evolves. Then the set up of the number

of chromosomes affected by the elitism process is done, and finally the stopping criterion.

All the sensibility analysis and the parameter configuration is going to be made in the data set of

week 24 Wednesday, this data-set was chosen because is the data-set that is in the mean of the year

and is the one that have the most customers, so will be the day that the algorithm need more time to

run. This data-set have a total of 233 customers to serve 982 palettes, since each vehicle load up to 33

pallets it takes at least 30 cars to supply all the customers.

The first thing that was done, to gain some sensibility of the algorithm was to change the probability

from 1/6 to 1/6 in all of the different reproductive processes. Since we have 3 parameters all the possible

case are:

Table 5.3: Probability variation of Sub-tour reverse

Probability

Mutation

Probability

Crossover
0 1/6 2/6 3/6 4/6 5/6 6/6

0 6/6 5/6 4/6 3/6 2/6 1/6 0

1/6 5/6 4/6 3/6 2/6 1/6 0 -

2/6 4/6 3/6 2/6 1/6 0 - -

3/6 3/6 2/6 1/6 0 - - -

4/6 2/6 1/6 0 - - - -

5/6 1/6 0 - - - - -

6/6 0 - - - - - -

As it is possible to see in table (5.3) that the probability of the 3 reproductive processes must be equal

to 1, this is, each offspring will be created by one of those three processes. If we choose for example a

probability of 3/6 for the mutation and a probability of 1/6 for the probability of the crossover, obligatorily

the probability of the sub-tour reverse must me equal to 2/6.

To run the initial solution a population size of 50 chromosomes was chosen which will generate 50

offspirngs in each generation, 5 chromosomes were chosen to be part of the elitism process. The Local
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Search (LS) was used after the GA to see if the improvement helps achieves a better solution. The

stopping criteria was chosen to be 2 hours where 1h45m were spend on the GA and 15m were spend

on the LS. Since the objective is to run the algorithm in around 2 hours. The algorithm was run 3 times

for each parameters since those algorithm depends on probability and is initialization dependent. Ideally

the algorithm should be run endless times and the mean of the solution should be analyzed, but since

a big computation time exist the algorithm run only 3 times for each set of parameters. Once more is

going to be stressed that this first run is only to gain some sensibility of the algorithm. Having the results

in the table (5.4).

Table 5.4: Fitness obtain in the first test with the variation of the probability of the reproductive process

Crossover Probability

0 1/6 2/6 3/6 4/6 5/6 6/6

Mutation

Probability
Min Mean Min Mean Min Mean Min Mean Min Mean Min Mean Min Mean

0 29113 30208 30127 30894 30223 30826 30155 30853 30463 31038 30460 30829 30050 31047

1/6 22043 22561 22780 23579 21797 22558 22621 23361 22579 22944 21373 22898 - -

2/6 20645 21206 21648 21735 20963 21593 19714 21325 21333 21700 - - - -

3/6 18902 19687 18930 19988 19551 20203 20638 21341 - - - - - -

4/6 18758 19086 19455 20231 19010 20064 - - - - - - - -

5/6 19381 19478 19088 19717 - - - - - - - - - -

6/6 18309 18957 - - - - - - - - - - - -

If we fixe the probability of the mutation and if we vary the probability of crossover, and the probability

of the sub-reverse indirectly, it is obtained the graph (5.1).

Figure 5.1: Graphical representation of the average solution fitness of table 5.4

In table (5.4) is possible to notice that the best parameters both for the minimum and for the mean
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are when the probability of the mutation operation is 1, this is, 100% of the chromosomes are created

using the mutation operation. if the results are analyzed using the graph (5.1) is easy to see that the

increasing of the probability of the mutation improves the results and the increasing of the probability

of the crossover does not change the solution very much. Note that those results are only valid if the

algorithm stops after 2 hours. If the best solution obtained is analyzed we have a final fitness of 18309

e, using 38 vehicles with a mean efficiency of 0.783 and leaving 0 pallets at the depot. The evolution of

the best solution is shown in figure (5.2).

Figure 5.2: Evolution of the best solution obtain in the first test

Is easy to see in table (5.4) that using this algorithm with very low parameters configurations already

achieves a solution, better that the solution of the baselines, in this data-set, with an efficiency almost

as good. In figure (5.2) is possible to see the best solution in each generation and the mean solution

in each generation, this is, the sum of the fitness of all solutions of the population divided by the size of

the population. It is also possible to see in figure (5.2) that the part of the GA of the proposed algorithm,

introduced in (4.1), has already begun to converge. Finally it was also possible to see that even though

the LS takes a long time to run, the use of the LS at the end of the algorithm may be advantageous.

5.4.2 Hybrid Genetic Algorithm

With the results obtain in table (5.4) and in graph (5.1) the conclusion was reached that it is only neces-

sary to run combinations where the probability of the mutation operation is bigger than 0.5, this happens

because with probabilities less than 0.5 for the mutation the algorithm is not able to evolve. Another

conclusion was that the LS greatly improves the solution in a way that the GA is not able to, but also
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uses a big computation time. For that reason the algorithm will be run ranging between GA and adap-

tation of LS. It was opted to run 5 generation of the adaptation after every 550 generation of GA. The

adaptation of the LS is very similar to the LS that was presented in section (4.3) but only 1 iteration of

the algorithm is done to generate a new ofspring and only the 5 chromosomes with the best fitness can

be selected, just like it was explain in section (4.4). Each generation of the adapted LS will generate 5

offsprings, and each generation takes about 1 minutes so in each period of the LS the algorithm will take

around 5 minutes. The GA will continue to generate 50 offsprings per generation, and each generation

takes around 1.5 seconds so in each period of the GA the algorithm will take around 15 minutes. This

new algorithm is called Hybrid Genetic Algorithm (HGA). This division causes about 3/4 of the time to

be spent in GA and the remaining 1/4 in the LS. Note that it is not possible to transform the LS in one of

the reproductive processes like it was done in Chand et al. [69] because each generation would take too

much time, which would make the algorithm not able to evolve, so a compromise was reached. With this

was run the HGA with the probability of the mutation operation ranging from 0.5 to 1 from 1/6 to 1/6, whit

a stop criteria of a maximum of 8h or 500 generations without evolution, the results are in table (5.5):

Table 5.5: Fitness obtain with the variation of the probability of the reproductive process

Crossover Probability

0 1/6 2/6 3/6

Mutation

Probability
Min Mean Min Mean Min Mean Min Mean

3/6 15922 16063 15875 16233 15803 16025 16282 16301

4/6 15875 16037 16164 16186 16090 16296 - -

5/6 15958 16340 16504 16557 - - - -

6/6 15971 16494 - - - - - -

If once more the probability of the mutation is fixed and if the probability of crossover is varied, and

the probability of the sub-reverse indirectly, it is obtain the next graph:

Figure 5.3: Graphical representation of the average solution fitness of table 5.5

In table (5.5) is possible to see that the best result, again both for the minimum fitness and the
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mean fitness, is when the probability of the mutation is 3/6, the probability of the crossover is 2/6 so

the probability of the sub-tour must be equal to 1/6. If the graph (5.3) is analysed, it can be seen that

the variation of the parameters is not so straightforward as in graph (5.1), in this graph seems that the

less the probability of the mutation the better the results and the increasing of the crossover the worst

the results. Even so it is possible to see that the best result is in between the values chosen so it was

chosen and fixed those values for the probability of the different reproductive processes. One thing that

is also possible to see is that all the results are better than the ones in the first test. This is due to the

utilization of the LS in between generation and also due to changing the stopping criteria, so the new

strategy chosen seems to achieve better results. If the best solution is analysed, it is obtain a fitness

of 15803e, with a total of 32 routes that have a mean efficiency of 0.9299 and leaves 0 pallets on the

depot, as we saw in the begging of section (5.4) the optimal solution in theory need to have at least 30

vehicles so this solution only uses two more vehicles, so it is possible to conclude that the solution is not

too far from the optimal solution. If the evolution of the best solution is analysed, it is obtain:

Figure 5.4: Evolution of the best solution obtain in the reproductive process parameterization

In figure (5.4) is easy to distinguish the difference from when the adaptive LS is used and when

the GA is used, in the Adaptive LS a great step towards the final solution is given and in the GA the

evolution is much slower. Once again this difference in evolution is due to the fact that LS directly

takes into account the objective function while GA does not. It is also possible to notice that after the

generation 8000 the algorithm is not able to evolve anymore. In the end when the LS is used the solution

is not able to evolve anymore, this happens because the solution is already very close to the optimal

and the flexibility is basically nil, and the LS has no ability to leave its respective local minimum. For the

reasons stated before the algorithm from now on will be run with only 8300 iteration and the LS is not
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going to be used in the end of the HGA. With this, the algorithm proposed in section (4.4) is reached.

Now with the probability of using each of the different reproductive processes fixed, is going to be

chosen what is the best size population and what should be the number of offsprings generated in each

iteration. The selection of the size of the population and number of offspings should not be selected

independently because in theory the population size is the possible search space, this is, the number

of solutions that can be exploited, and the number of offsprings is how long is the search in this space.

For the reason mention before the number of offsprings that will be generated will be depend on the

size of the population, the number of offsprings can be 0.5, 1, 1.5 or 2 times the size of the population.

Population size will range from 50 to 200 with an interval of 50 in 50. The fitness obtained with the

variation of those parameters appear in the table (5.6).

Table 5.6: Fitness obtained with the variation of the size of the population and the number of offsprings

Offsprings/Population

0.5 1 1.5 2

Population Min Mean Min Mean Min Mean Min Mean

50 15654 15846 16119 16299 16359 16604 16194 16387

100 15607 15984 15885 16069 15924 16044.7 15968.0 16261.0

150 16129 16342.7 16323 16463 15726 16067 15729 16157

200 16008 16145 15735 16260 - - - -

In table (5.6) is possible to see that the the best mean solution is when the algorithm uses a size of

50 individuals and generate 25 offsprings per generation, but is also possible to notice that the minimum

solution found was when the algorithm uses a population of 100 individuals and generate 50 offspings

per generation. The most important parameter of choice is the mean because the algorithm is only going

to be run 1 time, with this, the parameters set of (50, 0.5) was chosen. One thing that is not mentioned

in the table (5.6) is the running time of the algorithm with the different parameters. The more offsprings

generated the higher the computational time required by the algorithm. The set of parameters (200,

1.5), (200, 2) where not run since the set of parameters (200, 1) took about 20h to run, so increasing

the number of offsprings would take even longer and the algorithm would not able to be run with the

expected time. One thing that was expected to happen, that didn’t happen, was the improvement of

the solution with the increasing of the size population, because there was more search space to found

new solutions. This probably did not happen due to the maximum number of generations used, but a

weighting between the final result and the running time is necessary. The final parameters chosen for

the size of the population and the number of offsprings generated was (50,0.5), because a good solution

occurs and the algorithm runs in reasonable computing time, 4,5h.

The last set of parameters that are necessary to test are the number of chromosome that are used in

the elitism process. If a large number of chromosomes are used, the solution theoretical will converge

too quickly because less bad solution are explored, but if a small number of chromosomes are used the
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algorithm may always be looking for new solutions and never converge. Note that the selection process

of the new generation always exists so the best solution will always tend to survive more than the other,

and the algorithm will theoretically converge, but the best solution can also be lost in the process. The

algorithm was run with a variation in the number of chromosomes used in the elitism process between

0% and 20% of size of the population. The algorithm was run 5 times for each parameter set, because

this will be the last parameter set and because there are a small number of parameters that need to be

tested, which makes the algorithm capable of executing a larger number of times. The results obtained

are represented in table (5.7).

Table 5.7: Fitness obtain with the variation of the number of chromosomes in the elitism process

No chromosomes in elitims process

0 1 3 5 7 10

Min Mean Min Mean Min Mean Min Mean Min Mean Min Mean

15862 16320.4 16002 16237.4 15987 16420.6 15267 16056 15654 16326 15857 16215.8

The plot of the variation of the mean value of the fitness obtain by vary the number of chromosomes

on the elitism process is represented in figure (5.5).

Figure 5.5: Graphical representation of the mean solutions of table 5.7

Both in table (5.7) and in figure (5.5) is possible to notice that the algorithm gives better results when

the number of chromosomes on the elitims process is equal to 5. Just like it was explained before this

happens because if the number of chromosomes used is to small the best solutions may be lost and

the exploration of those solution may not occur, but if the number of chromosomes used it to large a big

intensification of those solution may occur and the search space is less sought after. Other thing that

is also possible to notice is that the best mean solution in (5.7) is worst that the best mean solution in

(5.6). This happen because as it was said before this algorithm is based in probabilities and initialization

which causes some variations of the results. Also in table (5.7) the number of experiments was higher

than the ones of table (5.6) which makes the result less influenced by each solution and gives a more

real value. The evolution of best solution obtain can be seen in figure (5.6).
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Figure 5.6: Evolution of the best solution obtain in the elitism parameterization

The best solution obtained has a fitness value of 15267e, using 31 vehicles to supply all the cus-

tomers with an mean efficiency of 0.96 and leaving 0 pallets on the depot. If we compare this solution

with the baseline solution, presented in (5.2) the fitness obtain is 30% less using the first approxima-

tion and leaving less 171 pallets on the depot, using the same number of vehicles. If we compare the

solution with the second approximation, the fitness is around less 0.27% and uses less 16 vehicles. In

conclusion, is possible to see that for this specific day the improvements using the algorithm are very

relevant. Finally if we analyze figure (5.6), is possible to see that the convergence of the results already

happen when the algorithm stops. It is also possible to see that the mean solution is always oscillating

even when there are no more improvement in the best solution, this indicates that the algorithm is still

looking for new solution and those solution are not equal to the best ones. Note that the solutions ob-

tain in this parameterization are equal to the solution of the final algorithm, since the all the parameters

are the same, so the the total analysis done earlier is equivalent to the analysis made using the final

algorithm. A validation parameter that has not yet been analyzed is the variation of the algorithm, using

the standard deviation in the 5 runs with the correct parameters is obtain 3.03%, this means that if the

algorithm is run 5 times it has an average deviation of 3.03%.

In this section it was conclude that the best parameters to be used in the algorithm for this specific

problem are the ranging between the adaptive LS and the GA as a reproductive process. For the

reproductive process in the GA a probability of 0.5 for the mutation, a probability of 0.3334 for the

crossover and a probability of 0.1666 for the sub-tour is used. A population size of 50 chromosomes

and a generation of 25 offsprings per generation. For the adaptive LS a generation of 5 chromosomes

per generation using only the best 5 chromosomes of the population. A total of 5 chromosomes in the

elitism process and finally a stopping criteria of 8300 iterations.
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5.5 Local Search analysis

In this section is going to analysed the behavior of the Local Search (LS) algorithm that was presented

in section (4.3). Once more the algorithm will be use the data set of Wednesday of week 24, again is

going to be used this data set because just like it is possible o see in (5.2) is the day that have the bigger

number of customers but also and more important is in the weak where the demands of the customers

is average. The results obtained if the algorithm is run during 5 times, are in table (5.8).

Table 5.8: Fitness obtain using the Local Search

Min Mean

16410 17425

Now if the evolution of the best solution using the LS is analysed, figure (5.7).

Figure 5.7: Evolution of the best solution obtain using the Local Search

In table (5.8) and in the figure (5.7) is possible to see that the best solution obtained has a fitness

of 16410e. This solution uses 32 vehicles with a mean efficiency of 0.928 to supply all the customers

leaving two pallets in the depot. Comparing this solution with the baseline solutions is possible to see

that using this algorithm in this data set the fitness is less 25% that the baseline solution using the first

approximation with less 169 pallets in the depot, and less 22% using when the second approximation is

used. Now if we analyse the evolution of best solution obtain using the LS, that is present in figure (5.7),

we can see that in the beginning the solution evolves very fast and after some time the evolution begins

to converge. This happens because in the beginning of the algorithm the solution is very poor and the

system still have a big flexibility to improvements. Over time the system starts to lose its flexibility and

the improvement begins to stagnate. Now if we look at the number of generation used to achieve a

final result we see that the number is much less that the number of iterations necessary in HGA, also is

possible to see that the stopping criteria is appropriate because the LS stops when the solution already
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converged. Finally if we compare the best solution obtain with the solution obtain in each iteration, we

can see that in the beginning the solutions are the same but with time the algorithm begins to make the

solution worse, so the LS does not guarantee always an improvement just like it was explain in section

(4.3).

5.6 Final Results

In this section is going to be run the Genetic Algorithm (GA) ranging with the Local Search (LS), also

called Hybrid Genetic Algorithm (HGA), and the the LS only 1 time for each data set, is also going to be

transform the data sets in their clusters just like it was explained in subsection (3.1.2) and in subsection

(5.2), and both algorithms will be run again 1 time only for each data set. The results of the fitness obtain

are in table (5.9).

Table 5.9: Fitness of the final results in e

Base1 Base2 HGA HGA cluster LS LS cluster

W
ee

k
6

Monday 13775 13775 13271 10962 15168 11585
Tuesday 7375 7375 7598 6286 8772 6298

Wednesday 14225 14225 13574 12324 14438 12181
Thursday 8155 8155 8420 6574 9089 6804

Friday 12835 12835 12576 9850 13521 11501

W
ee

k
24

Monday 15525 16820 13209 12086 15211 13758
Tuesday 10145 11320 8760 7959 9174 8483

Wednesday 21804 20850 16180 13993 17466 15538
Thursday 9420 11050 8520 7263 9186 7993

Friday 13950 15310 10848 9707 11898 10075

W
ee

k
50

Monday 16530 17955 15006 14398 16718 15285
Tuesday 12995 13820 13003 11614 13253 11789

Wednesday 18600 20625 16601 15190 17812 16238
Thursday 12905 13540 12523 11572 13342 11417

Friday 16745 17405 14940 13786 16496 14971

Mean 13665.6 14337.33 12335.27 10904.27 13436.27 11594.4

In table (5.9) is possible to notice that even if the algorithms are run only 1 time, all the algorithms

gives almost always a better solution that both baseline solution. The best results are obtained when

there is a cluster of the customers, this means that doing the cluster of the customers will result in a

better solution. If the HGA and the HGA cluster are compared it is possible to see that clustering the

customers lead always to better results, the same thing happens if the the LS and the LS cluster are

compared. Other thing that is also easy to see is that the HGA almost always obtains better results

than the LS, both with and without cluster. This happens because the HGA has more flexibility than the

simple LS, if the LS gets stuck in a local minimal it is not able to get out of it unlike the HGA that is

design to be able to get out of local minimal. One thing that is not possible to be see in the table is the

computational time, but just like it was expect the time in running the HGA is around 3 to 4 hours and

when the clusters are applied the time reduces in around 1 hour. The computational time of the LS is

around 15 minutes and when the clustering is applied an almost immediate solution is obtain.

The number of cars used is a very important aspect due to the higher cost being associated with the

vehicle cost. If we look at the number of cars that must be subcontract to the subcontractor is obtain
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table (5.10).

Table 5.10: Number of cars in the final results

Base1 Base2 HGA HGA cluster LS LS cluster

W
ee

k
6

Monday 29 29 26 24 28 24
Tuesday 17 17 16 15 19 15

Wednesday 29 29 26 24 27 25
Thursday 19 19 18 17 18 17

Friday 26 26 23 22 24 24

W
ee

k
24

Monday 28 37 26 26 28 28
Tuesday 20 28 19 20 19 20

Wednesday 31 47 32 31 33 33
Thursday 19 27 18 18 18 18

Friday 27 34 22 21 24 21

W
ee

k
50

Monday 35 41 33 33 33 34
Tuesday 31 36 30 31 31 32

Wednesday 40 50 37 38 38 40
Thursday 29 37 28 29 29 29

Friday 38 40 32 32 32 33

Mean 27.87 33.13 25.73 25.4 26.73 26.2

In table (5.10) is possible to see that the number of vehicles used is not always minimum in the best

solution. This happens because the objective function (3.5) depends not only on the number of vehicles

but also on the way the routes are made, so the best solutions does not have to mean the minimum

number of vehicle. Even so, is possible to see that in the first two weeks the best solutions have also

a minimum number of vehicles. In week 50 is possible to see that this phenomenon does not occur,

probably because in week 50 the mean number of pallets per customer is very high this makes the

algorithms to lose flexibility in the number of vehicles used, but is able to compensate otherwise. In

conclusion the minimum number of vehicles do not guarantee the minimum fitness but even so the HGA

cluster still gave the minimum mean number of vehicles. Like it was expect the baseline solution using

the second approximation gave the worst results. The LS algorithms always gives a bigger number of

vehicles than the HGA because the LS is not completely capable of reducing the number of routes,

which concludes that HGA brings together the best things about the GA and the LS.

Now if the mean efficient of the vehicles is analyzed, with this we have the table (5.11). The way to

calculate the mean efficient is explain in subsection (3.1.5).
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Table 5.11: Mean efficiency in the final results

Base1 Base2 HGA HGA cluster LS LS cluster

W
ee

k
6

Monday 0.792 0.792 0.882 0.955 0.817 0.94
Tuesday 0.841 0.841 0.894 0.941 0.752 0.943

Wednesday 0.800 0.800 0.900 0.965 0.86 0.924
Thursday 0.836 0.836 0.883 0.932 0.879 0.9251

Friday 0.800 0.800 0.906 0.953 0.870 0.870
W

ee
k

24

Monday 0.782 0.662 0.933 0.939 0.857 0.874
Tuesday 0.806 0.644 0.950 0.903 0.938 0.892

Wednesday 0.803 0.638 0.928 0.958 0.896 0.891
Thursday 0.781 0.611 0.917 0.919 0.919 0.908

Friday 0.686 0.602 0.915 0.952 0.842 0.955

W
ee

k
50

Monday 0.887 0.789 0.969 0.954 0.963 0.932
Tuesday 0.911 0.807 0.980 0.942 0.944 0.9059

Wednesday 0.876 0.737 0.986 0.954 0.957 0.903
Thursday 0.912 0.753 0.978 0.935 0.943 0.932

Friday 0.81 0.777 0.931 0.954 0.952 0.92

Mean 0.822 0.739 0.930 0.944 0.893 0.914

The analysis of table (5.11) is very similar to the analysis made before for the table (5.10). This is

because the mean efficiency of the vehicle is greatly influenced by the number of vehicles used. The

other parameter that influence the mean efficiency is the number of pallets that are left on the depot.

From the table (5.10) and (5.11) is possible to see that the mean efficiency is always smaller when the

number of vehicles used it’s minimal. Again is possible to notice that the HGA cluster not always give

the best mean efficiency even so is the algorithm that gives the minimum on the mean of all data sets.

Finally like before is possible to see that the the worst results are obtained in the baseline solution when

the second approximation is used, and the LS gives normally worst results that the HGA for the same

reason previously stated.

If we analyse the last relevant parameter, the number of pallets that are left on the depot, the table

(5.12) is obtain.

Table 5.12: Number of pallets left on the depot in the final results

Base1 Base2 HGA HGA cluster LS LS cluster

W
ee

k
6

Monday 1 1 0 1 2 10
Tuesday 0 0 0 6 0 5

Wednesday 4 4 0 8 5 7
Thursday 1 1 0 2 3 6

Friday 5 5 4 0 3 3

W
ee

k
24

Monday 88 3 0 6 9 4
Tuesday 64 1 0 0 8 7

Wednesday 171 2 1 2 6 12
Thursday 57 2 2 1 1 9

Friday 68 1 3 7 0 5

W
ee

k
50

Monday 52 9 1 14 6 6
Tuesday 40 13 2 3 4 6

Wednesday 69 9 7 12 9 13
Thursday 59 13 6 9 5 11

Friday 11 2 1 8 10 12

Mean 46 4.4 1.8 5.27 4.73 7.73

Now if we analyse table (5.12), that has the amount of pallets that are left in the depot is possible to
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see that the algorithm that leave on average less pallets on the depot is the HGA followed by the baseline

solution when the second approximation is used. This happens because the data set without the cluster

are more flexible and are able to give good results without leaving many pallets in the depot and the HGA

is the algorithm that can better do this weighting. One thing that can be see in the number of pallets in

the depot, is that the baseline solution using the first approximation leaves much more pallets that all

the other. This indicates that probably the company is not able to use this approximation to deliver the

demands of the customers and the second approximation must to be used, or a compromise between

the two. Finally is possible to notice that once more the HGA leaves on average less pallets that the LS

and that in week 50 all the algorithms leave a lot more pallets than in the other two weeks, again this

happen because the demand of the customers on week 50 is higher than in the other weeks.
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Chapter 6

Conclusions

6.1 Conclusions

In this master thesis was developed two algorithms that solved a real problem proposed by the company

Worten with the restrictions based on its own logistics. This problem can also be called Site Dependent

Vehicle Routing Problem with Hard Time Windows (SDVRPHTW). The algorithms developed achieves

better results than the solutions developed by the company. The Hybrid Genetic Algorithm is the one

that achieves better results and the Local Search is able to find competitive results in those data sets in

a shorter computational time than the hybrid algorithm. Transforming the customers into their clusters

shifted the overall results from an improvement of almost 10% to an improvement of over 20%, although

this transformation increases the number of pallets left in the depot.

The use of the Local Search in the Genetic Algorithm, the Hybrid Genetic Algorithm, greatly improved

the solution due to the LS taking into account the objective function and not purely the randomness, but

also requires a longer computational time. The hybrid algorithm implemented gave the good results

because it’s a population algorithm is able to not only improve the best individual, but also explore new

solution using the other individuals, which allows great flexibility and has a good behavior along with

very restrictive and highly non feasible problems. It is believed that this hybrid algorithm is able to give

competitive results in other vehicle routing problems variants and those type of algorithms should be

further investigated in the literature.

The hybrid algorithm has the problem that it needs intensive parameter calibrations, which requier a

long preprocessing before the algorithm is ready to use.

6.2 Future work

The proposed approach can be improvement in many different ways. Even if the algorithm is prepared to

take into account independent pickups this part of the algorithm was not able to be tested and compared

due to the lack of information, so a validation of the of the reverse logistics is necessary to be able to use

the this part in the algorithm. Other aspect that can also be improved in the reverse logistics is to do the
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collection and delivery in the same stop and check if there is a significant improvement. This strategy

may reduce the number of used cars if it is necessary to deliver and collect to the same customers.

Other aspect that is important to improve in the algorithm is to replace distance estimates with actual

distances using an API. This approach will make the feasibility of the routes more real. Even so using

estimates of distances, it is easy to prove that using these algorithms will improve the baseline solutions.

A cluster to the zones could also be applied, this would decrease the number of non feasible solutions

generated because two clients from different zones may not be able to be on the same route, which

would make the running of the algorithm more efficient. The final improvement would be the necessity

of improving the computational time used, since the algorithm needs to run between 2/3 hours daily, this

improvement could be made after by a code optimization expert or by parallelizing the algorithm.

This algorithm can also be used to assist in deciding each customer’s delivery windows, that is, since

the algorithm is able to provide near optimal routes, the customer input parameters, such as delivery

windows, can be changed and checked which are the best entry parameters that optimize the overall

fitness. This change in the algorithm can greatly improve the total cost of the transportation.
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Appendix A

apendix

A.1 Flowchart of the first proposed algorithm
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A.2 Flowchart of the last proposed algorithm
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A.3 Extended pseudo algorithm of the initial construct algorithm

Figure A.1: psedocode2
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A.4 Initialization illustration small example

Figure A.2: itialization example

A.5 Extended baseline solution analysis

A.5.1 Week 6

The week 6 just like it was explain before is the a typical week where the demand of the clients is not

very high, this is there are not many pellets per clients and also not many customers that need to be

supply. The characteristics of the days and the baseline solution are analyse next day by day.

Monday

In the first day of week 6, Monday, there are 212 different customers that need to be supply that have

a total demand of 757 pallets, so each customer has on average a demand of 3.57 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 23 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets,

where two pallets can be left in the depot, are necessary at least 22 vehicles to supply all the customers

where some of the pallets will not be delivered that day. If we cluster the customers just like it is explain

in subsection (3.1.2) we end with a total of 97 customers with an average a demand of 7.8 pallets

If we analyse the baseline solution for Monday of week 6, it is possible to notice that there are used

29 vehicles with an average efficiency of 0.79. The baseline solution is the same using first or the second

the approximation because all the vehicles carry a total demand lower than the maximum capacity of
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the vehicle. The fit of this solution using the objective function is 13775.

Tuesday

In the second day of week 6, Tuesday, there are 124 different customers that need to be supply that

have a total demand of 472 pallets, so each customer has on average a demand of 3.8 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 15 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 14 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 63 customers with average a demand of 7.49 pallets

If we analyse the baseline solution for Tuesday of week 6, it is possible to notice that there are

used 17 vehicles with an average efficiency of 0.841. The baseline solution is the same using first or

the second the approximation once more because all the vehicles carry a total demand lower than the

maximum capacity of the vehicle. The final fit is 7375.

Wednesday

In the third day of week 6, Wednesday, there are 213 different customers that need to be supply that

have a total demand of 772 pallets, so each customer has on average a demand of 3.62 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 24 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 23 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 100 customers with average a demand of 7.72 pallets

If we analyse the baseline solution for Wednesday of week 6, it is possible to notice that there are

used 29 vehicles with an average efficiency of 0.8025. The baseline solution is the same using first or

the second the approximation once more because all the vehicles carry a total demand lower than the

maximum capacity of the vehicle. The final fit is 14225.

Thursday

In the fourth day of week 6,Thursday, there are 141 different customers that need to be supply that

have a total demand of 525 pallets, so each customer has on average a demand of 3.72 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 16 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 15 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 66 customers with average a demand of 7.95 pallets

If we analyse the baseline solution for Thursday of week 6, it is possible to notice that there are

used 19 vehicles with an average efficiency of 0.836. The baseline solution is the same using first or

the second the approximation once more because all the vehicles carry a total demand lower than the

maximum capacity of the vehicle. The final fit is 8155.
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Friday

In the last day of week 6,Friday, there are 196 different customers that need to be supply that have

a total demand of 692 pallets, so each customer has on average a demand of 3.53 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 21 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 20 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 92 customers with average a demand of 7.52 pallets

If we analyse the baseline solution for Friday of week 6, it is possible to notice that there are used 26

vehicles with an average efficiency of 0.80. The baseline solution is the same using first or the second

the approximation once more because all the vehicles carry a total demand lower than the maximum

capacity of the vehicle. The final fit is 12835.

A.5.2 Week 24

The week 24 just like it was explain before is the a typical week where the volume of demands of the

customers is not to high or to low , this is there is a mediated number of customers each with a median

volume. The characteristics of the days and the baseline solution are analyse next day by day.

Monday

In the first day of week 24,Monday, there are 169 different customers that need to be supply that have

a total demand of 801 pallets, so each customer has on average a demand of 4.74 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 25 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 23 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 104 customers with average a demand of 7.7 pallets

If we analyse the baseline solution for Monday of week 24 using the first option, it is possible to notice

that there are used 28 vehicles with an average efficiency of 0.782 and a final fit of 15525. If solution is

analyse using the second option,there are used 37 vehicles with an average efficiency of 0.661 and a

final fit of 16820

Tuesday

In the second day of week 24,Tuesday, there are 128 different customers that need to be supply that

have a total demand of 596 pallets, so each customer has on average a demand of 4.65 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 19 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 18 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 73 customers with average a demand of 8.16 pallets
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If we analyse the baseline solution for Tuesday of week 24 using the first option, it is possible to notice

that there are used 20 vehicles with an average efficiency of 0.644 and a final fit of 10145. If solution is

analyse using the second option,there are used 28 vehicles with an average efficiency of 0.661 and a

final fit of 11320

Wednesday

In the third day of week 24,Wednesday, there are 233 different customers that need to be supply that

have a total demand of 982 pallets, so each customer has on average a demand of 4.21 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 30 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 29 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 115 customers with average a demand of 8.54 pallets

If we analyse the baseline solution for Wednesday of week 24 using the first option, it is possible

to notice that there are used 31 vehicles with an average efficiency of 0.802 and a final fit of 18745.

If solution is analyse using the second option,there are used 47 vehicles with an average efficiency of

0.638 and a final fit of 20850.

Thursday

In the fourth day of week 24,Thursday, there are 117 different customers that need to be supply that

have a total demand of 547 pallets, so each customer has on average a demand of 4.68 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 17 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 16 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 65 customers with average a demand of 8.42 pallets

If we analyse the baseline solution for Thursday of week 24 using the first option, it is possible to

notice that there are used 19 vehicles with an average efficiency of 0.781 and a final fit of 9420. If

solution is analyse using the second option,there are used 27 vehicles with an average efficiency of

0.612 and a final fit of 11050.

Friday

In the last day of week 24,Friday, there are 132 different customers that need to be supply that have

a total demand of 667 pallets, so each customer has on average a demand of 4.05 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 21 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 20 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 81 customers with average a demand of 8.23 pallets

If we analyse the baseline solution for Friday of week 24 using the first option, it is possible to notice

that there are used 27 vehicles with an average efficiency of 0.683 and a final fit of 13950. If solution is
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analyse using the second option,there are used 34 vehicles with an average efficiency of 0.602 and a

final fit of 15310.

A.5.3 Week 50

The week 50 the demand of the clients is very high, this is there are many pellets per clients and also

there are many customers that need to be supply. The characteristics of the days and the baseline

solution are analyse next day by day.

Monday

In the first day of week 50,Monday, there are 160 different customers that need to be supply that have

a total demand of 1056 pallets, so each customer has on average a demand of 6.6 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 32 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 31 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 93 customers with average a demand of 11.35 pallets

If we analyse the baseline solution for Monday of week 50 using the first option, it is possible to notice

that there are used 35 vehicles with an average efficiency of 0.887 and a final fit of 16530. If solution is

analyse using the second option,there are used 41 vehicles with an average efficiency of 0.789 and a

final fit of 17955.

Tuesday

In the second day of week 50,Tuesday, there are 142 different customers that need to be supply that

have a total demand of 972 pallets, so each customer has on average a demand of 6.85 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 30 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 28 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 76 customers with average a demand of 12.79 pallets

If we analyse the baseline solution for Tuesday of week 50 using the first option, it is possible to notice

that there are used 31 vehicles with an average efficiency of 0.911 and a final fit of 12995. If solution is

analyse using the second option,there are used 36 vehicles with an average efficiency of 0.807 and a

final fit of 13820.

Wednesday

In the third day of week 50,Wednesday, there are 195 different customers that need to be supply that

have a total demand of 1211 pallets, so each customer has on average a demand of 6.21 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 37 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are
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necessary at least 35 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 99 customers with average a demand of 12.23

If we analyse the baseline solution for Wednesday of week 50 using the first option, it is possible

to notice that there are used 40 vehicles with an average efficiency of 0.876 and a final fit of 18600. If

solution is analyse using the second option,there are used 50 vehicles with an average efficiency of 0.74

and a final fit of 20625.

Thursday

In the fourth day of week 50,Thursday, there are 138 different customers that need to be supply that

have a total demand of 910 pallets, so each customer has on average a demand of 6.59 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 28 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 26 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 76 customers with average a demand of 11.97

If we analyse the baseline solution for Thursday of week 50 using the first option, it is possible to

notice that there are used 29 vehicles with an average efficiency of 0.912 and a final fit of 12905. If

solution is analyse using the second option,there are used 37 vehicles with an average efficiency of

0.753 and a final fit of 13540.

Friday

In the last day of week 50,Friday, there are 148 different customers that need to be supply that have

a total demand of 1017 pallets, so each customer has on average a demand of 6.87 pallets. If it is

considered that each vehicle can bring a total of 33 pallets, are necessary at least 31 vehicle to supply

all the demands to the customers. If is considered that each vehicle can ”bring” a total of 35 pallets, are

necessary at least 30 vehicles to supply all the customers where some of the pallets will not be delivered

that day. If we cluster the customers we end with 91 customers with average a demand of 11.18

If we analyse the baseline solution for Friday of week 50 using the first option, it is possible to notice

that there are used 38 vehicles with an average efficiency of 0.81 and a final fit of 16745. If solution is

analyse using the second option,there are used 40 vehicles with an average efficiency of 0.777 and a

final fit of 17405.
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